【題目】某校高一班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
1求分數(shù)在的頻數(shù)及全班人數(shù);
2求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
3若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
【答案】(1)2,25;(2);(3).
【解析】
1先由頻率分布直方圖求出的頻率,結合莖葉圖中得分在的人數(shù)即可求得本次考試的總人數(shù);2根據(jù)莖葉圖的數(shù)據(jù),利用1中的總人數(shù)減去外的人數(shù),即可得到內(nèi)的人數(shù),從而可計算頻率分布直方圖中間矩形的高;3用列舉法列舉出所有的基本事件,找出符合題意得基本事件個數(shù),利用古典概型概率計算公式即可求出結果.
1分數(shù)在的頻率為,
由莖葉圖知:
分數(shù)在之間的頻數(shù)為2,
全班人數(shù)為.
2分數(shù)在之間的頻數(shù)為;
頻率分布直方圖中間的矩形的高為.
3將之間的3個分數(shù)編號為,,,之間的2個分數(shù)編號為,,
在之間的試卷中任取兩份的基本事件為:
,,,,,,,,,共10個,
其中,至少有一個在之間的基本事件有7個,
故至少有一份分數(shù)在之間的概率是.
科目:高中數(shù)學 來源: 題型:
【題目】若方程有實數(shù)根,則稱為函數(shù)的一個不動點.已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)當時是否存在不動點?并證明你的結論;
(2)若,求證有唯一不動點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第41屆世界博覽會于2010年5月1日至10月31日,在中國上海舉行,氣勢磅礴的中國館——“東方之冠”令人印象深刻,該館以“東方之冠,鼎盛中華,天下糧倉,富庶百姓”為設計理念,代表中國文化的精神與氣質(zhì).其形如冠蓋,層疊出挑,制似斗拱.它有四根高33.3米的方柱,托起斗狀的主體建筑,總高度為60.3米,上方的“斗冠”類似一個倒置的正四棱臺,上底面邊長是139.4米,下底面邊長是69.9米,則“斗冠”的側面與上底面的夾角約為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,,,直線AG,BG相交于點G,且它們的斜率之積為.記點G的軌跡為曲線C.
(1)若射線與曲線C交于點D,且E為曲線C的最高點,證明:.
(2)直線與曲線C交于M,N兩點,直線AM,AN與y軸分別交于P,Q兩點.試問在x軸上是否存在定點T,使得以PQ為直徑的圓恒過點T?若存在,求出T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】向50名學生調(diào)查對A、B兩事件的態(tài)度,有如下結果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學生數(shù)比對A、B都贊成的學生數(shù)的三分之一多1人. 問對A、B都贊成的學生有____________人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校冬季長跑活動中,學校要給獲得一、二等獎的學生購買獎品,要求花費總額不得超過元.已知一等獎和二等獎獎品的單價分別為元、元,一等獎人數(shù)與二等獎人數(shù)的比值不得高于,且獲得一等獎的人數(shù)不能少于人,那么下列說法中錯誤的是( )
A.最多可以購買份一等獎獎品
B.最多可以購買份二等獎獎品
C.購買獎品至少要花費元
D.共有種不同的購買獎品方案
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接“五一國際勞動節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎活動現(xiàn)有甲品牌和乙品牌的掃地機器人作為獎品,從這兩種品牌的掃地機器人中各隨機抽取6臺檢測它們充滿電后的工作時長相關數(shù)據(jù)見下表(工作時長單位:分)
機器序號 | 1 | 2 | 3 | 4 | 5 | 6 |
甲品牌工作時長/分 | 220 | 180 | 210 | 220 | 200 | 230 |
乙品牌工作時長/分 | 200 | 190 | 240 | 230 | 220 | 210 |
(1)根據(jù)所提供的數(shù)據(jù),計算抽取的甲品牌的掃地機器人充滿電后工作時長的平均數(shù)與方差;
(2)從乙品牌被抽取的6臺掃地機器人中隨機抽出3臺掃地機器人,記抽出的掃地機器人充滿電后工作時長不低于220分鐘的臺數(shù)為,求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了豐富學生的課外文化生活,某中學積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調(diào)查學生的學習積極性與參加文體活動是否有關,學校對200名學生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動 | 不參加文體活動 | 合計 | |
學習積極性高 | 80 | ||
學習積極性不高 | 60 | ||
合計 | 200 |
已知在全部200人中隨機抽取1人,抽到學習積極性不高的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.9%的把握認為學習積極性高與參加文體活動有關?請說明你的理由;
(3)若從不參加文體活動的同學中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學習積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com