設(shè)函數(shù)f(x)在其定義域(0,+∞)上的取值不恒為0,且x>0,y∈R時(shí),恒有f(xy)=yf(x).若a>b>c>1且a、b、c成等差數(shù)列,則f(a)f(c)與[f(b)]2的大小關(guān)系為( )
A.f(a)f(c)<[f(b)]2
B.f(a)f(c)=[f(b)]2
C.f(a)f(c)>[f(b)]2
D.不確定
【答案】分析:由于已知中的函數(shù)f(x)為抽象函數(shù),故我們可以在熟悉的基本函數(shù)中找到一個(gè)滿足條件的函數(shù),如對(duì)數(shù)函數(shù),然后利用特殊情況分析法進(jìn)行解答.
解答:解:令f(x)=lgx滿足題目要求,
再令a=30,b=20,c=10滿足a>b>c>1且a、b、c成等差數(shù)列,
則f(a)f(c)=lg20•lg10=1+lg2
[f(b)]2=lg220=(1+lg2)2>1+lg2
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是等差數(shù)列的性質(zhì)及抽象函數(shù)及其應(yīng)用,利用特殊情況進(jìn)行分析是解答選擇題常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z)
,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說(shuō)明理由.
(II)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
(III) 將函數(shù)y=f(x)的圖象向左平移一個(gè)單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省廣州二中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說(shuō)明理由.
(II)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
(III) 將函數(shù)y=f(x)的圖象向左平移一個(gè)單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省南充市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+(a, b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案