設函數(shù)是定義域為的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值為,求的值.

(Ⅰ); (Ⅱ)的值是.

解析試題分析:(Ⅰ)根據(jù)奇函數(shù)定義,對任意,;(Ⅱ)由(1)和條件,確定,然后令,將化為,,,將問題轉化為在定區(qū)間上求二次函數(shù)最值.利用上的最小值為確定.試題解析:(1)由題意,對任意,即
,,因為為任意實數(shù),
所以. 
(2)由(1),因為,所以,解得.     
,,
,則,由,得,
所以
時,上是增函數(shù),則,,解得(舍去).              
時,則,,解得,或(舍去).
綜上,的值是
考點:奇函數(shù)定義、指數(shù)函數(shù)、二次函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),函數(shù),
(1)當時,討論的奇偶性;
(2)當時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,畫出函數(shù)的簡圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(1)寫出的奇偶性與單調(diào)性(不要求證明);
(2)若函數(shù)的定義域為,求滿足不等式的實數(shù)的取值集合;
(3)當時,的值恒為負,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)對任意滿足,若當時,),且
(1)求實數(shù)的值;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是同時符合以下性質(zhì)的函數(shù)組成的集合:
,都有;②上是減函數(shù).
(1)判斷函數(shù)()是否屬于集合,并簡要說明理由;
(2)把(1)中你認為是集合中的一個函數(shù)記為,若不等式對任意的總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,解不等式;
(2)若,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 
(1)當,解不等式;
(2)當時,若,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

解方程

查看答案和解析>>

同步練習冊答案