已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)且斜率為的直線被橢圓截的弦長(zhǎng)。
(1)(2)

試題分析:解:(1)因?yàn)閽佄锞的焦點(diǎn)為,        2分
橢圓的左端點(diǎn)為
          4分
          6分
所求橢圓的方程為       7分
⑵∴橢圓的右焦點(diǎn),∴的方程為:,      9分
代入橢圓C的方程,化簡(jiǎn)得,          10分
由韋達(dá)定理知,         12分
從而 
由弦長(zhǎng)公式,得
即弦AB的長(zhǎng)度為         14分
點(diǎn)評(píng):解決的關(guān)鍵是利用聯(lián)立方程組,結(jié)合韋達(dá)定理來(lái)求解,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足,.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點(diǎn),且,N(1,0),求實(shí)數(shù),使,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
(3)過(guò)原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦距為2,則的值為(    )
A.3B.C.3或5D.3或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,已知橢圓的方程為 ,A為橢圓的左頂點(diǎn),B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=45°,則橢圓的離心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

斜率為的直線與雙曲線(a>0,b>0)恒有兩個(gè)公共點(diǎn),則雙曲線離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線的右焦點(diǎn)F作與軸垂直的直線,分別與雙曲線、雙曲線的漸近線交于點(diǎn)(均在第一象限內(nèi)),若,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案