【題目】設(shè)有兩個命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個命題中有且只有一個是真命題,則m的取值范圍是_______.

【答案】

【解析】

由絕對值得意義知,p:即 m1;由指數(shù)函數(shù)的單調(diào)性與特殊點得,q:即 m2.從而求得當(dāng)這兩個命題有且只有一個正確時實數(shù)m的取值范圍.

(1):∵不等式|x|+|x﹣1|>m的解集為R,而|x|+|x﹣1|表示數(shù)軸上的x到0和1的距離之和,最小值等于1,

∴m<1.

(2):∵f(x)=﹣(7﹣3m)x是減函數(shù),

∴7﹣3m>1,m<2.

當(dāng) 1≤m<2時,(1)不正確,而(2)正確,兩個命題有且只有一個正確,實數(shù)m的取值范圍為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線C:=1的右焦點F且與x軸不重合的直線交雙曲線C于A、B兩個點,定點D(,0).

(1)當(dāng)直線AB垂直于x軸時,求直線AD的方程.

(2)設(shè)直線AD與直線x=1相交于點E,求證:FD∥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

溫差

發(fā)芽數(shù)(顆)

由表中根據(jù)日至的數(shù)據(jù),求的線性回歸方程中的,則______,若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程____.(填“可靠”或“不可幕”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若是第二象限角,試分別確定,,的終邊所在的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組表示的平面區(qū)域為,若函數(shù)的圖象上存在區(qū)域上的點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小值為

(1)求 的值;(2)求 的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是( )

(1)的極大值點 ;(2)函數(shù)有且只有1個零點;(3)存在正實數(shù),使得恒成立 ;(4)對任意兩個正實數(shù),且,若,則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;

()若函數(shù)不存在零點,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,分別是、的中點.

1)設(shè)棱的中點為,證明:平面;

2)若,,且平面平面,求三棱柱的高.

查看答案和解析>>

同步練習(xí)冊答案