【題目】如圖所示,點列滿足:,,均在坐標軸上,則向量()

A. B.

C. D.

【答案】D

【解析】

由于點列{An}滿足:||1,||2||+1,設(shè),則a11an+12an+1,變形為an+1+12an+1),可知;數(shù)列{an+1}是等比數(shù)列,利用通項公式可得.由于Ai均在坐標軸上(iN*),且A4n3,A4n2A4n1,A4n,(nN*)分別在y軸的正半軸,x軸的正半軸,y軸的負半軸,x軸的負半軸.

可得向量的橫坐標=a2a4+a6a8+…+a2010a2012+a2014,向量的縱坐標=a1a3+a5a7+…+a2011+a2013,再利用等比數(shù)列的前n項和公式即可得出.

∵點列{An}滿足:||1||2||+1,

設(shè),則a11,an+12an+1,化為an+1+12an+1),

∴數(shù)列{an+1}是等比數(shù)列,

2n

由于Ai均在坐標軸上(iN*),

A4n3A4n2,A4n1A4n,分別在y軸的正半軸,x軸的正半軸,y軸的負半軸,x軸的負半軸.

∴向量的橫坐標=a2a4+a6a8+…+a2010a2012+a2014

=(221)﹣(241+261)﹣(281+…+220101)﹣(220121+220141

2224+2628+…+2201022012+220141

1

同理可得向量的縱坐標=a1a3+a5a7+…+a2011+a2013

∴向量

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】()(2017·衡水二模)某商場在元旦舉行購物抽獎促銷活動,規(guī)定顧客從裝有編號0,1,2,3,4的五個相同小球的抽獎箱中一次任意摸出兩個小球,若取出的兩個小球的編號之和等于7則中一等獎,等于65則中二等獎,等于4則中三等獎,其余結(jié)果為不中獎.

(1)求中二等獎的概率.

(2)求不中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下四種變換方式:

向左平移個單位長度,再把所得各點的橫坐標縮短到原來的縱坐標不變

向左平移個單位長度,再把所得各點的橫坐標縮短到原來的縱坐標不變;

把各點的橫坐標縮短到原來的縱坐標不變,再向左平移個單位長度;

把各點的橫坐標縮短到原來的縱坐標不變,再向左平移個單位長度;

其中能將函數(shù)的圖象變?yōu)楹瘮?shù)的圖象的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:

(1) 取出的2個球都是白球;

(2)取出的2個球中1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十九大報告指出,要推進綠色發(fā)展,倡導(dǎo)“簡約知適度、綠色低碳”的生活方式,開展創(chuàng)建“低碳生活,綠色出行”等行動.在這一號召下,越來越多的人秉承“能走不騎,能騎不坐,能坐不開”的出行理念,盡可能采取乘坐公交車騎自行車或步行等方式出行,減少交通擁堵,共建清潔、暢通高效的城市生活環(huán)境.某市環(huán)保機構(gòu)隨機抽查統(tǒng)計了該市部分成年市民某月騎車次數(shù),統(tǒng)計如下:

次數(shù)

人數(shù)

年齡

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.

(I)若從被抽查的該月騎車次數(shù)在的老年人中隨機選出兩名幸運者給予獎勵,求其中一名幸運者該月騎車次數(shù)在之間,另一名幸運者該月騎車次數(shù)在之間的概率;

(Ⅱ)用樣本估計總體的思想,解決如下問題:

()估計該市在32歲至44歲年齡段的一個青年人每月騎車的平均次數(shù);

() 若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),能否在犯錯誤的概率不超過0.001的前提下認為“騎行愛好者”與“青年人”有關(guān)?

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點

(I)證明:點在直線上;

(Ⅱ)當四邊形是平行四邊形時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表:

溫度x/

21

23

25

27

29

32

35

產(chǎn)卵個數(shù)y/

7

11

21

24

66

115

325

(I)根據(jù)散點圖判斷,哪一個適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);

(II)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

Ⅲ)紅鈴蟲是棉區(qū)危害較重的害蟲,可從農(nóng)業(yè)、物理和化學三個方面進行防治,其中農(nóng)業(yè)方面防治有3種方法,物理方面防治有1種方法,化學方面防治3種方法,現(xiàn)從7種方法中選3種方法進行綜合防治(即3種方法不能全部來自同一方面,至少來自兩個方面),X表示在綜合防治中農(nóng)業(yè)方面的防治方法的種數(shù),求X的分布列及數(shù)學期望E(X).

附:可能用到的公式及數(shù)據(jù)表中(表中 , = = , =

27.430

3.612

81.290

147.700

2763.764

705.592

40.180

對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域為[a12a],則a________,b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實數(shù)a________

查看答案和解析>>

同步練習冊答案