【題目】某科技研究所對一批新研發(fā)的產(chǎn)品長度進(jìn)行檢測(單位:mm),如圖是檢測結(jié)果的頻率分布直方圖,據(jù)此估計(jì)這批產(chǎn)品的中位數(shù)為( )
A.20
B.22.5
C.22.75
D.25
【答案】B
【解析】解:根據(jù)頻率分布直方圖,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位數(shù)應(yīng)在20~25內(nèi),
設(shè)中位數(shù)為x,則
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴這批產(chǎn)品的中位數(shù)是22.5.
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的定義域?yàn)榧螦,函數(shù)g(x)=lg(x2﹣2x+a)的定義域?yàn)榧螧. (Ⅰ)當(dāng)a=﹣8時,求A∩B;
(Ⅱ)若A∩RB={x|﹣1<x≤3},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=3sin(2x+ )圖象,只需把函數(shù)y=3sin2x圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)O(0,0)和點(diǎn) 分別是雙曲線 ﹣y2=1(a>0)的中心和右焦點(diǎn),A為右頂點(diǎn),點(diǎn)M為雙曲線右支上的任意一點(diǎn),則 的取值范圍為( )
A.[﹣1,+∞)
B.(0,+∞)
C.[﹣2,+∞)
D.[0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=2,a3+a5=16. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果a2 , am , a2m成等比數(shù)列,求正整數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)的頻率分布直方圖如圖所示.求眾數(shù)、中位數(shù)、平均數(shù)( )
A.63、64、66
B.65、65、67
C.65、64、66
D.64、65、64
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com