設(shè),函數(shù).
(1)當(dāng)時(shí),求在內(nèi)的極大值;
(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.(其中是的導(dǎo)函數(shù).)
(1)1;(2) .
解析試題分析:(1)當(dāng)時(shí),求, 令,求,利用的單調(diào)性,求的最大值,利用的最大值的正負(fù),確定的正負(fù),從而確定的單調(diào)性,并確定的正負(fù),即的正負(fù),得到的單調(diào)性,確定極大值,此題確定極大值需要求二階導(dǎo)數(shù),偏難;(2)先求函數(shù),再求,由方程有兩個(gè)不等實(shí)根, 確定的范圍,再將代入,再整理不等式,討論,,三種情況,反解,從而利于恒成立求出的范圍.屬于較難試題.
試題解析:(1)當(dāng)時(shí),,
則, 2分
令,則,
顯然在內(nèi)是減函數(shù),
又因,故在內(nèi),總有,
所以在上是減函數(shù) 4分
又因, 5分
所以當(dāng)時(shí),,從而,這時(shí)單調(diào)遞增,
當(dāng)時(shí),,從而,這時(shí)單調(diào)遞減,
所以在的極大值是. 7分
(2)由題可知,
則. 8分
根據(jù)題意,方程有兩個(gè)不同的實(shí)根,(),
所以,即,且,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/85/0/1xefc3.png" style="vertical-align:middle;" />,所以.
由,其中,可得
注意到,
所以上式化為,
即不等式對任意的
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),其中為實(shí)常數(shù)。
(1)討論的單調(diào)性;
(2)不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,設(shè),。是否存在實(shí)常數(shù),既使又使對一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有且只有一個(gè)解,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)且,時(shí),若有,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn) 處的切線斜率為.
(1)求實(shí)數(shù)的值;
(2) 求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若函數(shù)的圖像上存在兩點(diǎn),使得對于任意給定的正實(shí)數(shù)都滿足是以為直角頂點(diǎn)的直角三角形,且三角形斜邊中點(diǎn)在軸上,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.
(Ⅰ)求關(guān)于的函數(shù)關(guān)系式?
(Ⅱ)求圓柱形罐子體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,則,滿足什么條件時(shí),曲線與在處總有相同的切線?
(2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時(shí),若對任意的恒成立,求的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com