已知雙曲線的方程為,過(guò)左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是( )
A. | B. | C. | D. |
B
解析試題分析:依題意知過(guò)左焦點(diǎn)且斜率為的直線為,與軸交點(diǎn)為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/c/qdkrg4.png" style="vertical-align:middle;" />軸平分線段F1P,所以點(diǎn)P坐標(biāo)為,此點(diǎn)在雙曲線上,代入雙曲線方程得又代入可以求得雙曲線的離心率為.
考點(diǎn):本小題主要考查雙曲線的簡(jiǎn)單幾何性質(zhì).
點(diǎn)評(píng):本題考查了雙曲線的性質(zhì)以及與直線的關(guān)系,關(guān)鍵是用含有c的式子表示出點(diǎn)p的坐標(biāo),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
過(guò)點(diǎn)P(0,-2)的雙曲線C的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知F1,F2是橢圓的兩個(gè)焦點(diǎn),過(guò)F1且與橢圓長(zhǎng)軸垂直的直線交橢圓于A,B兩點(diǎn),若△ABF2是正三角形,則這個(gè)橢圓的離心率是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點(diǎn),過(guò)F1的直線與的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為
A. | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若雙曲線的左焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則p的值為( )
A.2 | B.3 | C.4 | D.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知方程 表示焦點(diǎn)在y軸上的橢圓,則k的取值范圍是( )
A.6<k<9 | B.k>3 | C.k>9 | D.k<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)F1、F2為橢圓的左、右焦點(diǎn),過(guò)橢圓中心任作一直線與橢圓交于P、Q 兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),的值等于( )
A.0 | B.1 | C.2 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)雙曲線的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2-bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)
A.在圓x2+y2=8外 | B.在圓x2+y2=8上 |
C.在圓x2+y2=8內(nèi) | D.不在圓x2+y2=8內(nèi) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com