設(shè)、是兩條不同的直線,是一個(gè)平面,則下列命題正確的是
A.若,則B.若,則
C.若,,則D.若,,則
B
分析:根據(jù)題意,依次分析選項(xiàng):A,根據(jù)線面垂直的判定定理判斷.C:根據(jù)線面平行的判定定理判斷.D:由線線的位置關(guān)系判斷.B:由線面垂直的性質(zhì)定理判斷;綜合可得答案.
解答:解:A,根據(jù)線面垂直的判定定理,要垂直平面內(nèi)兩條相交直線才行,不正確;
C:l∥α,m?α,則l∥m或兩線異面,故不正確.
D:平行于同一平面的兩直線可能平行,異面,相交,不正確.
B:由線面垂直的性質(zhì)可知:平行線中的一條垂直于這個(gè)平面則另一條也垂直這個(gè)平面.故正確.
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在三棱錐中,已知點(diǎn)、分別為棱、的中點(diǎn).
(1)求證:∥平面;
(2)若,,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面命題中錯(cuò)誤的是
A.如果平面平面,那么平面內(nèi)一定存在直線平行于平面;
B.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面;
C.如果平面平面,平面平面,,那么平面
D.如果平面平面,那么平面內(nèi)所有直線都垂直于平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐中,//,,平面,.
(Ⅰ)設(shè)平面平面,求證://;
(Ⅱ)求證:平面;
(Ⅲ)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若平面//平面,平面平面=直線m ,平面平面=直線n ,則m與n的位置關(guān)系是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分如圖,四邊形為矩形,且,上的動(dòng)點(diǎn)。

(1) 當(dāng)的中點(diǎn)時(shí),求證:
(2) 設(shè),在線段上存在這樣的點(diǎn)E,使得二面角的平面角大小為。試確定點(diǎn)E的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,在矩形ABCD中AB="1," BC=, 點(diǎn)P為矩形ABCD所
在平面外一點(diǎn),PA⊥平面ABCD,點(diǎn)E為PA的中點(diǎn)。

(Ⅰ)求證:PC//平面BED;
(Ⅱ)求直線BD與平面PAB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,CE∥AB。
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD與平面PAD所成的角為45°,求二面角B—PE—A的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線平行于平面內(nèi)的無(wú)數(shù)條直線,則下列結(jié)論正確的是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案