【題目】某校從參加高二年級(jí)學(xué)業(yè)水平測(cè)試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(jī)(均為整數(shù))的頻率分布直方圖如圖,估計(jì)這次測(cè)試中數(shù)學(xué)成績(jī)的平均分、眾數(shù)、中位數(shù)分別是(

A.73.3,75,72
B.72,75,73.3
C.75,72,73.3
D.75,73.3,72

【答案】B
【解析】解:①平均數(shù)是頻率分布直方圖的“重心”,
等于頻率分布直方圖中每個(gè)小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和.
所以平均成績(jī)?yōu)椋?/span>
45×(0.005×10)+55×(0.015×10)+65×(0.020×10)+
75×(0.030×10)+85×(0.025×10)+95×(0.005×10)=72;
②由眾數(shù)概念知,眾數(shù)是出現(xiàn)次數(shù)最多的,
在直方圖中,高度最高的小矩形的中間值的橫坐標(biāo)即為眾數(shù),
由頻率分布直方圖知,這次測(cè)試數(shù)學(xué)成績(jī)的眾數(shù)為75;
③由于中位數(shù)是所有數(shù)據(jù)中的中間值,
故在直方圖中,體現(xiàn)的是中位數(shù)的左右兩邊頻數(shù)應(yīng)用相等,即頻率相等,
從而就是小矩形的面積和相等,
因此在頻率分布直方圖中,
將頻率分布直方圖中所有小矩形面積一分為二的直線所對(duì)應(yīng)的成績(jī)即為所求,
∵前三個(gè)小矩形的面積和為(0.005+0.015+0.020)×10=0.4,
第四個(gè)小矩形的面積為0.030×10=0.3,0.4+0.3=0.7>0.5,
∴中位數(shù)應(yīng)位于第四個(gè)小矩形中,
設(shè)其底邊為x,高為0.03,
∴令0.03x=0.1,解得x≈3.3,
故成績(jī)的中位數(shù)為73.3.
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若不等式f(x)<0對(duì)任意x∈(1,+∞)恒成立. (。┣髮(shí)數(shù)a的取值范圍;
(ⅱ)試比較ea2與ae2的大小,并給出證明(e為自然對(duì)數(shù)的底數(shù),e=2.71828).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=2BB1=2BC,E為D1C1的中點(diǎn),連結(jié)ED,EC,EB和DB.
(Ⅰ)證明:A1D1∥平面EBC;
(Ⅱ)證明:平面EDB⊥平面EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,SADC= ,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)試討論函數(shù)的單調(diào)性;

(2)如果且關(guān)于的方程有兩解 ),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}中,a1=2,a4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a3 , a5分別為等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),試求數(shù)列{bn}的前項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線.

(1)若直線與曲線有且僅有一個(gè)公共點(diǎn),求公共點(diǎn)橫坐標(biāo)的值;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)路口的紅綠燈,紅燈亮的時(shí)間為40秒,黃燈亮的時(shí)間為5秒,綠燈亮的時(shí)間為50秒(沒有兩燈同時(shí)亮),當(dāng)你到達(dá)路口時(shí),看見下列三種情況的概率各是多少?
(1)紅燈;
(2)黃燈;
(3)不是紅燈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案