如圖,四邊形是直角梯形,∠=90°,,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(1)求證:平面⊥平面;
(2)求三棱錐的體積;
(Ⅰ)∵
,
又∵              
           
(Ⅱ)取的中點,則,連結(jié),
,∴,從而
,=120°
,,,

為正方形 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知不重合的平面、β和不重合的直線m、n,給出下列命題:
m∥n,n??m∥;
m∥n,n??m與不相交;
∩β=m,n∥,n∥β?n∥m;
∥β,m∥β,m?m∥
m∥,n∥β,m∥n?∥β;
m?,n?β,⊥β?m⊥n;
m⊥,n⊥β,與β相交?m與n相交;
m⊥n,n?β,mβ?m⊥β;

其中正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,點分別在線段上,且 .以下結(jié)論:①;②;③MN//平面;④MN異面;⑤MN⊥平面.其中有可能成立的結(jié)論的個數(shù)為(    )
A.5B.4 C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,已知矩形ABCD的邊AB="2" ,BC=,點E、F分別是邊AB、CD的中點,沿AF、EC分別把三角形ADF和三角形EBC折起,使得點D和點B重合,記重合后的位置為點P。
(1)求證:平面PCE平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點,求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,.
(1)證明:;   
(2)設(shè)PD=AD=1,求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 14分)在如圖的多面體中,⊥平面,,,,,,的中點.
(1) 求證:平面;
(2) 求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點。
(1)當(dāng)E為PD的中點時,求證:
(2)是否存在E使二面角E—AC—D為30°?若存在,求,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱的所有棱長都相等,且底面,的中點,
(Ⅰ)求證:
(Ⅱ)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

所在平面外一點,與平面所成的角相等,,則的形狀可以是     ▲      。(將以下正確答案的序號填上:①等邊三角形;②等腰三角形;③非等腰三角形;④等腰直角三角形。)

查看答案和解析>>

同步練習(xí)冊答案