【題目】某城市先后采用甲、乙兩種方案治理空氣污染各一年,各自隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的檢測(cè)數(shù)據(jù)進(jìn)行分析,若空氣質(zhì)量指數(shù)值在[0,300]內(nèi)為合格,否則為不合格.表1是甲方案檢測(cè)數(shù)據(jù)樣本的頻數(shù)分布表,如圖是乙方案檢測(cè)數(shù)據(jù)樣本的頻率分布直方圖.
表1:
API值 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | 大于300 |
天數(shù) | 9 | 13 | 19 | 30 | 14 | 11 | 4 |
(1)將頻率視為概率,求乙方案樣本的頻率分布直方圖中的值,以及乙方案樣本的空氣質(zhì)量不合格天數(shù);
(2)求乙方案樣木的中位數(shù);
(3)填寫(xiě)下面2×2列聯(lián)表(如表2),并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān).
表2:
甲方案 | 乙方案 | 合計(jì) | |
合格天數(shù) | _______ | _______ | _______ |
不合格天數(shù) | _______ | _______ | _______ |
合計(jì) | _______ | _______ | _______ |
附:
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
【答案】(1),11天;(2)170;(3)表格見(jiàn)解析,有90%的把握認(rèn)為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān)
【解析】
(1)根據(jù)頻率和為1列出等式求解a,用乙方案樣本中空氣質(zhì)量指數(shù)值大于300的頻率乘以總天數(shù)即可得解;(2)根據(jù)中位數(shù)左邊和右邊的小長(zhǎng)方形的面積和是相等的列出等式即可求得中位數(shù);(3)由題意填寫(xiě)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論.
(1)由頻率分布直方圖知,
,
解得,
∴乙方案樣本中不合格天數(shù)為(天);
(2)根據(jù)圖1,得,
又,∵,
∴中位數(shù)在(150,200]之間,設(shè)中位數(shù)為,
則,解得,
∴乙方案樣本的中位數(shù)為170;
(3)由題意填寫(xiě)列聯(lián)表如下,
甲方案 | 乙方案 | 合計(jì) | |
合格天數(shù) | 96 | 89 | 185 |
不合格天數(shù) | 4 | 11 | 15 |
合計(jì) | 100 | 100 | 200 |
由表中數(shù)據(jù),計(jì)算,
,
∴有90%的把握認(rèn)為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)是的極小值點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】整數(shù)集就像一片浩瀚無(wú)邊的海洋,充滿了無(wú)盡的奧秘.古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)220和284具有如下性質(zhì):220的所有真因數(shù)之和恰好等于284,同時(shí)284的所有真因數(shù)之和也等于220,他把具有這種性質(zhì)的兩個(gè)整數(shù)叫做一對(duì)“親和數(shù)”,“親和數(shù)”的發(fā)現(xiàn)吸引了古今中外無(wú)數(shù)數(shù)學(xué)愛(ài)好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對(duì)“親和數(shù)”,把這六個(gè)數(shù)隨機(jī)分成兩組,一組2個(gè)數(shù),另一組4個(gè)數(shù),則220和284在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,試討論的單調(diào)性;
(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若f(x)在[0,2]上是單調(diào)函數(shù),求a的值;
(2)已知對(duì)∈[1,2],f(x)≤1均成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值;
(3)若方程,有兩個(gè)不相等的實(shí)數(shù)根,比較與0的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()經(jīng)過(guò),兩點(diǎn).O為坐標(biāo)原點(diǎn),且的面積為.過(guò)點(diǎn)且斜率為k()的直線l與橢圓C有兩個(gè)不同的交點(diǎn)M,N,且直線,分別與y軸交于點(diǎn)S,T.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線l的斜率k的取值范圍;
(Ⅲ)設(shè),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1.四邊形是邊長(zhǎng)為10的菱形,其對(duì)角線,現(xiàn)將沿對(duì)角線折起,連接,形成如圖2的四面體,則異面直線與所成角的大小為______.在圖2中,設(shè)棱的中點(diǎn)為,的中點(diǎn)為,若四面體的外接球的球心在四面體的內(nèi)部,則線段長(zhǎng)度的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),直線是曲線的切線;
(2)若不等式在上恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com