(本小題滿(mǎn)分12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)設(shè)某物體一天中的溫度是時(shí)間的函數(shù):,其中溫度的單位是,時(shí)間單位是小時(shí),表示12:00,取正值表示12:00以后.若測(cè)得該物體在8:00的溫度是,12:00的溫度為,13:00的溫度為,且已知該物體的溫度在8:00和16:00有相同的變化率.
(1)寫(xiě)出該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)該物體在10:00到14:00這段時(shí)間中(包括10:00和14:00),何時(shí)溫度最高,并求出最高溫度;
(3)如果規(guī)定一個(gè)函數(shù)在區(qū)間上的平均值為,求該物體在8:00到16:00這段時(shí)間內(nèi)的平均溫度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù):
R(x)=.
其中x是儀器的月產(chǎn)量.
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)f(x);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)是定義在上的奇函數(shù),且
(1)確定函數(shù)的解析式。
(2)用定義法證明上是增函數(shù)。
(3)解關(guān)于t的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題13分)已知函數(shù)
(1)在右圖給定的直角坐標(biāo)系內(nèi)畫(huà)出的圖象;
(2)寫(xiě)出的單調(diào)遞增區(qū)間.
(3) 求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是二次函數(shù),不等式的解集是在區(qū)間上的最大值是12.
(Ⅰ)求的解析式;
(Ⅱ)是否存在自然數(shù)使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的集合;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).             
(1)求函數(shù)的定義域;
(2)當(dāng)時(shí),總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
某工廠去年的某產(chǎn)品的年銷(xiāo)售量為100萬(wàn)只,每只產(chǎn)品的銷(xiāo)售價(jià)為10元,每只產(chǎn)品固定成本為8元.今年,工廠第一次投入100萬(wàn)元(科技成本),并計(jì)劃以后每年比上一年多投入100萬(wàn)元(科技成本),預(yù)計(jì)銷(xiāo)售量從今年開(kāi)始每年比上一年增加10萬(wàn)只,第n次投入后,每只產(chǎn)品的固定成本為且n≥0),若產(chǎn)品銷(xiāo)售價(jià)保持不變,第n次投入后的年利潤(rùn)為萬(wàn)元.
(Ⅰ)求出的表達(dá)式;
(Ⅱ)若今年是第1年,問(wèn)第幾年年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案