【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

56.3

6.8

289.8

1.6

1469

108.8

表中.

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的年利率,的關(guān)系為.根據(jù)(Ⅱ)的結(jié)果回答下列問(wèn)題:

(i)年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?

(ii)年宣傳費(fèi)為何值時(shí),年利率的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù),,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,.

【答案】(1)見(jiàn)解析;(2)(3)(i)年銷(xiāo)售量576.6,年利潤(rùn)66.32(ii)

【解析】

1)根據(jù)散點(diǎn)圖,即可得到判斷,得到結(jié)論;

2)先建立中間量,建立關(guān)于的線(xiàn)性回歸方程,進(jìn)而得到關(guān)于的線(xiàn)性回歸方程;

3)(i)由(2),當(dāng)時(shí),代入回歸直線(xiàn)的方程,即可求解;

(ii)根據(jù)(2),得到年利潤(rùn)的預(yù)報(bào)值方程,根據(jù)函數(shù)的性質(zhì),即可求解.

(1)由散點(diǎn)圖可以判斷,適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程類(lèi)型.

(2)令,先建立關(guān)于的線(xiàn)性回歸方程,

由于,

所以關(guān)于的線(xiàn)性回歸方程為

因此關(guān)于的回歸方程為.

(3)(i)由(2)知,當(dāng)時(shí),年銷(xiāo)售量的預(yù)報(bào)值,

年利潤(rùn)的預(yù)報(bào)值.

(ii)根據(jù)(2)的結(jié)果知,年利潤(rùn)的預(yù)報(bào)值,

所以當(dāng),即時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為促進(jìn)全面健身運(yùn)動(dòng),某地跑步團(tuán)體對(duì)本團(tuán)內(nèi)的跑友每周的跑步千米數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取的100名跑友,分別統(tǒng)計(jì)他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.

1)由頻率分布直方圖計(jì)算跑步千米數(shù)不小于70千米的人數(shù);

2)已知跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,現(xiàn)在從跑步千米數(shù)在的跑友中抽取3名代表發(fā)言,用表示所選的3人中跑步千米數(shù)在的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體中,,四邊形為矩形,四邊形為直角梯形,,,,.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的參數(shù)方程: 為參數(shù)),曲線(xiàn)的參數(shù)方程: 為參數(shù)),且直線(xiàn)交曲線(xiàn)兩點(diǎn).

(1)將曲線(xiàn)的參數(shù)方程化為普通方程,并求時(shí), 的長(zhǎng)度;

(2)巳知點(diǎn),求當(dāng)直線(xiàn)傾斜角變化時(shí), 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)的直線(xiàn)與圓相切于點(diǎn),且,則雙曲線(xiàn)的離心率為( )

A. B. 2 C. 3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假.

1;(2;

3;(4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性(只寫(xiě)出結(jié)論即可);

(3)若對(duì)任意的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)函數(shù)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠(chǎng)家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入萬(wàn)元滿(mǎn)足

1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案