已知AA1⊥平面ABC,AA1=AB=BC=CA=3,P為A1B上的點。
(1)當(dāng)P為A1B的中點時,求證:AB⊥PC ;
(2)當(dāng)時,求二面角P-BC-A平面角的余弦值。
(1)證明:當(dāng)時,
作PD∥AA1交AB于D,連CD,
由AA1⊥面ABC,知PD⊥面ABC,
 當(dāng)P為A1B的中點時,D為AB中點,
∵△ABC為正三角形,
∴CD⊥AB,
∴AB⊥平面PCD,
∴PC⊥AB。
(2)解:過P作PD⊥AB于D,過D作DE⊥BC于E,連結(jié)PE,
則∠DEP為二面角P-BC-A的平面角,
∵PD=2,DE=,PE=,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知AA1⊥平面ABC,AB=BC=AA1=CA,P為A1B上的點.
(1)當(dāng)
A1P
PB
為何值時,AB⊥PC;
(2)當(dāng)二面角P-AC-B的大小為
π
3
時,求
A1P
PB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AA1⊥平面ABC,AB=BC=AA1=CA,P為A1B上的點.

   (1)當(dāng)

   (2)當(dāng)二面角P―AC―B的大小為的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AA1⊥平面ABC,AB=BC=AA1=CA,P為A1B上的點.

(1)當(dāng)為何值時,AB⊥PC;

(2)當(dāng)二面角P-AC-B的大小為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省高三數(shù)學(xué)沖刺模擬練習(xí)試卷(解析版) 題型:解答題

已知AA1⊥平面ABC,AB=BC=AA1=CA,P為A1B上的點.
(1)當(dāng)為何值時,AB⊥PC;
(2)當(dāng)二面角P-AC-B的大小為時,求的值.

查看答案和解析>>

同步練習(xí)冊答案