對于曲線C:給出下面四個命題:
①曲線C不可能表示橢圓;
②當時,曲線C表示橢圓;
③若曲線C表示雙曲線,則
④若曲線C表示焦點在軸上的橢圓,則
其中所有正確命題的序號為______________
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓C:的兩個焦點為,點在橢圓C上,且,
,.
(1) 求橢圓C的方程;
(2) 若直線過圓的圓心,交橢圓C于、兩點,且、關(guān)于點對稱,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為右準線上不同于點(4,0)的任意一點,若直線分別與橢圓相交于異于的點,證明點在以為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
設(shè)橢圓右焦點為,它與直線相交于兩點,軸的交點到橢圓左準線的距離為,若橢圓的焦距的等差中項.
⑴求橢圓離心率;
⑵設(shè)點與點關(guān)于原點對稱,若以為圓心,為半徑的圓與相切,且求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(本題滿分15分)已知m>1,直線
橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,,
的重心分別為.若原點在以線段
為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C,經(jīng)過橢圓的右焦點F且斜率為的直線l交橢圓C于A、B兩點,M為線段AB的中點,設(shè)O為橢圓的中心,射線OM交橢圓于N點.
(I)是否存在,使對任意,總有成立?若存在,求出所有的值;
(II)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過橢圓的一個焦點,則的值是(  )
A.    B.C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、若橢圓的弦被點(4,2)平分,則此弦所在直線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的離心率,過左焦點的直線交橢圓于兩點,橢圓的右焦點為,則的周長是    ﹡   .則可以輸出的函數(shù)是    ﹡   

查看答案和解析>>

同步練習冊答案