【題目】已知橢圓 上的動點P與其頂點 , 不重合. (Ⅰ)求證:直線PA與PB的斜率乘積為定值;
(Ⅱ)設(shè)點M,N在橢圓C上,O為坐標原點,當OM∥PA,ON∥PB時,求△OMN的面積.

【答案】解:(Ⅰ)證明:設(shè)P(x0 , y0),則 . 所以直線PA與PB的斜率乘積為 .…(4分)
(Ⅱ)依題直線OM,ON的斜率乘積為-
① 當直線MN的斜率不存在時,直線OM,ON的斜率為 ,設(shè)直線OM的方程
,由 ,y=±1.
,則 .所以△OMN的面積為
②當直線MN的斜率存在時,設(shè)直線MN的方程是y=kx+m,
得(3k2+2)x2+6kmx+3m2﹣6=0.
因為M,N在橢圓C上,
所以△=36k2m2﹣4(3k2+2)(3m2﹣6)>0,解得3k2﹣m2+2>0.
設(shè)M(x1 , y1),N(x2 , y2),則 , =
設(shè)點O到直線MN的距離為d,則
所以△OMN的面積為 …①.
因為OM∥PA,ON∥PB,直線OM,ON的斜率乘積為- ,所以
所以 =
,得3k2+2=2m2…②
由①②,得
綜上所述,
【解析】(Ⅰ)設(shè)點設(shè)P(x0 , y0),從而可得直線PA與PB的斜率乘積為 (Ⅱ)設(shè)方程為y=kx+m,由兩點M,N滿足OM∥PA,ON∥PB及(Ⅰ)得直線OM,ON的斜率乘積為﹣ ,可得到m、k的關(guān)系,再用弦長公式及距離公式,求出△OMN的底、高,表示:△OMN的面積即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式an;
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項和為Tn , 是否存在正整數(shù)m,使得Tn 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M是直線l:x=﹣1上的動點,點F的坐標是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點N (Ⅰ)求點N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動點A關(guān)于x軸的對稱點為A′,點P的坐標為(2,0),直線AP與曲線C的另一個交點為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個定點Q,使得|QH|為定值?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年微信用戶數(shù)量統(tǒng)計顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個

0

0

6至10個

30

0.3

11至15個

30

0.3

16至20個

a

c

20個以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過15個的概率;
(Ⅲ)以這100個人的樣本數(shù)據(jù)估計北京市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學(xué)生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)D為不等式組 表示的平面區(qū)域,對于區(qū)域D內(nèi)除原點外的任一點A(x,y),則2x+y的最大值是 , 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f( )且當x∈[ ,1]時,f(x)=lnx,若當x∈[ ]時,函數(shù)g(x)=f(x)﹣ax與x軸有交點,則實數(shù)a的取值范圍是(
A.[﹣ ,0]
B.[﹣πl(wèi)nπ,0]
C.[﹣ ]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標原點,P(x,y)為函數(shù)y=1+lnx圖象上一點,記直線OP的斜率k=f(x). (Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+ )(m>0)上存在極值,求實數(shù)m的取值范圍;
(Ⅱ)當x≥1時,不等式f(x)≥ 恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足bn=an+1﹣an(n=1,2,3,…).
(1)若bn=10﹣n,求a16﹣a5的值;
(2)若 且a1=1,則數(shù)列{a2n+1}中第幾項最?請說明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求證:“數(shù)列{an}為等差數(shù)列”的充分必要條件是“數(shù)列{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝品廠要設(shè)計一個如圖Ⅰ所示的工藝品,現(xiàn)有某種型號的長方形材料如圖Ⅱ所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設(shè)△ADP的面積為
S2 , 折疊后重合部分△ACP的面積為S1
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應(yīng)怎樣設(shè)計材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應(yīng)怎樣設(shè)計材料的長和寬?

查看答案和解析>>

同步練習(xí)冊答案