【題目】(本題滿(mǎn)分12分)已知,函數(shù)

)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程.

)若,求在閉區(qū)間上的最小值.

【答案】;.

【解析】試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值和最值、利用導(dǎo)數(shù)求函數(shù)的切線(xiàn)方程等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),將代入中,對(duì)求導(dǎo), 為切點(diǎn)的縱坐標(biāo),而是切線(xiàn)的斜率,最后利用點(diǎn)斜式寫(xiě)出直線(xiàn)方程;第二問(wèn),對(duì)求導(dǎo),令,將分成兩部分: 進(jìn)行討論,討論函數(shù)的單調(diào)性,利用單調(diào)性判斷函數(shù)的最小值,綜合所有情況,得到的解析式.

試題解析:定義域:

)當(dāng)時(shí), ,則

,則

處切線(xiàn)方程是: ,即,

,令,得到

當(dāng)時(shí), ,則有


0










0


0




0


極大


極小



則最小值應(yīng)該由中產(chǎn)生,

當(dāng)時(shí), ,此時(shí)

當(dāng)時(shí), ,此時(shí),

當(dāng)時(shí), ,則有


0








0




0


極小



綜上所述:當(dāng)時(shí), 在區(qū)間上的最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用長(zhǎng)14.8 m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,如果所制的底面的一邊比另一邊長(zhǎng)0.5 m,那么容器的最大容積為________m3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),圓,圓心到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為3,點(diǎn)是拋物線(xiàn)在第一象限上的點(diǎn),過(guò)點(diǎn)作圓的兩條切線(xiàn),分別與軸交于兩點(diǎn).

(1)求拋物線(xiàn)的方程;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分12分)已知,函數(shù)

)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程.

)若,求在閉區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直角坐標(biāo)平面xOy中的拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F作一條傾斜角為的直線(xiàn)與拋物線(xiàn)相交于AB兩點(diǎn).

(1)用p表示線(xiàn)段AB的長(zhǎng);

(2)若,求這個(gè)拋物線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R},則A∩(RB)=(
A.[1,2]
B.[0,2]
C.[1,4]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1,F2為橢圓C: 的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)圓O是以F1,F2為直徑的圓,直線(xiàn)l: y =k x + m與圓O相切,并與橢圓C交于不同的兩點(diǎn)A,B,若,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知集合,對(duì)于集合的兩個(gè)非空子集,,若,則稱(chēng)為集合的一組“互斥子集”.記集合的所有“互斥子集”的組數(shù)為(視為同一組“互斥子集”).

(1)寫(xiě)出,的值;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.

(1)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

50

50

a

150

b


(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案