已知平面內(nèi)一動點 P到定點的距離等于它到定直線的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當(dāng)點 P(x,y)(x≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線所得的弦長;
(3)當(dāng)點 P(x,y)(x≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.
【答案】分析:(1)根據(jù)拋物線的定義判定出動點 P是以為焦點以為準(zhǔn)線的拋物線,直接寫出其方程為x2=2y
(2)根據(jù)圓的標(biāo)準(zhǔn)方程求出圓的方程,根據(jù)直線截圓的弦長公式弦長l=2求出該圓截直線所得的弦長
(3)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用直線的點斜式求出切線l的方程為,利用點到直線的距離公式求出B到PA的距離為,再求出點B到直線PF的距離,根據(jù)角平分線的判定得到總有PB平分∠APF.
解答:解:(1)根據(jù)題意,動點 P是以為焦點以為準(zhǔn)線的拋物線,
所以p=1開口向上,
所以動點 P的軌跡C的方程為x2=2y
(2)以 M P為直徑的圓的圓心(),|MP|===
所以圓的半徑r=,圓心到直線的距離d=||=,
故截得的弦長l=2==1
(3)總有 P B平分∠A PF.
證明:因為
所以,y=x,
所以切線l的方程為,
令y=0得,
所以B(
所以B到PA的距離為
下面求直線PF的方程,
因為
所以直線PF的方程為整理得
所以點B到直線PF的距離
所以 PB平分∠APF.
點評:本題考查導(dǎo)數(shù)的幾何意義;直線與圓相交的弦長公式;點到直線的距離公式以及角平分線的判定,屬于一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求
AD
EB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且
MA
=λ1
AF
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到定點F(2,0)的距離與點P到y(tǒng)軸的距離的差等于2.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作傾斜角為60°的直線l與軌跡C交于A(x1,y1),B(x2,y2)(x1<x2)兩點,O為坐標(biāo)原點,點M為軌跡C上一點,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)已知平面內(nèi)一動點 P到定點F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長;
(3)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(1)求動點P的軌跡C的方程;
(2)是否存在過點N(4,2)的直線m,使得直線m被曲線C所截得的弦AB恰好被點N平分?如果存在,求出直線m的方程;不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案