【題目】已知二次函數(shù)fx)滿足fx=f2-x),且f1=6,f3=2.若不等式fx)>2mx+1[-1,3]恒成立,則實(shí)數(shù)m的取值范圍是______

【答案】-

【解析】

根據(jù)fx=f2-x),且f1=6,f3=2.求解fx)的解析式,帶入不等式,討論對稱軸與區(qū)間端點(diǎn)大小,即可求解實(shí)數(shù)m的取值范圍.

由題意,設(shè)fx=ax2+bx+c,

fx=f2-x),可得,即b=-2a;

f1=6,f3=2

可得

解得:c=5,a=-1,b=2

fx=-x2+2x+5,

-x2+2x+52mx+1[-13]恒成立,

hx=x2+2m-2x-40

根據(jù)二次函數(shù)的性質(zhì),可得,即

故答案為:(-).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C和點(diǎn),,若在圓C上存在點(diǎn)P,使得,則半徑r的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2-mx+m2+m-1=0有兩實(shí)根x1,x2

1)求m的取值范圍;

2)求x1x2的最值;

3)如果,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中文函數(shù)function)一詞,最早由近代數(shù)學(xué)家李善蘭翻譯的之所以這么翻譯,他給出的原因是凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù),也即函數(shù)指一個量隨著另一個量的變化而變化下列選項(xiàng)中兩個函數(shù)相等的是(   。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對數(shù)的底數(shù)).

(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;

(2)是否存在實(shí)數(shù)t,使不等式f(xt)+f(x2t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線 ,直線與拋物線交于, 兩點(diǎn).

(1)若直線 的斜率之積為,證明:直線過定點(diǎn);

(2)若線段的中點(diǎn)在曲線 上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某物流公司購買了一塊長AM=90米,寬AN=30米的矩形地塊AMPN,規(guī)劃建設(shè)占地如圖中矩形ABCD的倉庫,其余地方為道路和停車場,要求頂點(diǎn)C在地塊對角線MN上,B、D分別在邊AM、AN上,假設(shè)AB長度為x米.若規(guī)劃建設(shè)的倉庫是高度與AB的長相同的長方體建筑,問AB長為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點(diǎn)A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

【答案】I)拋物線C的方程為,其準(zhǔn)線方程為II)符合題意的直線l 存在,其方程為2x+y-1 =0.

【解析】

試題()求拋物線標(biāo)準(zhǔn)方程,一般利用待定系數(shù)法,只需一個獨(dú)立條件確定p的值:(-222p·1,所以p2.再由拋物線方程確定其準(zhǔn)線方程:,()由題意設(shè),先由直線OA的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點(diǎn)確定

試題解析:解 (1)將(1,-2)代入y22px,得(-222p·1

所以p2

故所求的拋物線C的方程為

其準(zhǔn)線方程為

2)假設(shè)存在符合題意的直線,

其方程為

因?yàn)橹本與拋物線C有公共點(diǎn),

所以Δ48t≥0,解得

另一方面,由直線OA的距離

可得,解得

因?yàn)椋?/span>1[,+),1∈[,+),

所以符合題意的直線存在,其方程為

考點(diǎn):拋物線方程,直線與拋物線位置關(guān)系

【名師點(diǎn)睛】求拋物線的標(biāo)準(zhǔn)方程的方法及流程

1)方法:求拋物線的標(biāo)準(zhǔn)方程常用待定系數(shù)法,因?yàn)槲粗獢?shù)只有p,所以只需一個條件確定p值即可.

2)流程:因?yàn)閽佄锞方程有四種標(biāo)準(zhǔn)形式,因此求拋物線方程時,需先定位,再定量.

提醒:求標(biāo)準(zhǔn)方程要先確定形式,必要時要進(jìn)行分類討論,標(biāo)準(zhǔn)方程有時可設(shè)為y2=mxx2=mym≠0).

型】解答
結(jié)束】
22

【題目】已知橢圓的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)直線過橢圓左焦點(diǎn)交橢圓于,為橢圓短軸的上頂點(diǎn),當(dāng)直線時,求的面積.

查看答案和解析>>

同步練習(xí)冊答案