【題目】在如圖所示的幾何體中,四邊形是邊長(zhǎng)為2的菱形,平面,

1)證明:平面平面

2)求二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)連接于點(diǎn),證明,,推出平面,得到平面平面;

(2)取的中點(diǎn),連接,則,說(shuō)明兩兩垂直,以所在直線分別作為軸,軸,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,平面的一個(gè)法向量,用向量夾角公式求出向量夾角余弦值,即可得出結(jié)果.

1)連接于點(diǎn),因?yàn)?/span>是菱形,

所以,

平面,∴,

平面平面,

平面,

∴平面ACF⊥平面BDEF

2)取的中點(diǎn),連接,則

平面,∴平面,∴兩兩垂直.

所在直線分別作為軸,軸,軸建立空間直角坐標(biāo)系(如圖),

,

,,

,,

,,

所以,,且,

所以平面

所以平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為,

,∴,

,

得平面的一個(gè)法向量,

從而.

即二面角的余弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長(zhǎng)度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形,均是以為直角頂點(diǎn)的等腰直角三角形,點(diǎn)的中點(diǎn),點(diǎn)是邊上的任意一點(diǎn).

(1)求證:

(2)在平面中,是否總存在與平面平行的直線?若存在,請(qǐng)作出圖形并說(shuō)明:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,則當(dāng)φ取最小的值時(shí),g(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).?dāng)?shù)列{bn}滿足bn= ,則{bn}中的最大項(xiàng)的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(jī)(單位:分),結(jié)果如下:

學(xué)生

第1次

第2次

第3次

第4次

第5次

65

80

70

85

75

80

70

75

80

70

則成績(jī)較為穩(wěn)定(方差較。┑哪俏粚W(xué)生成績(jī)的方差為

查看答案和解析>>

同步練習(xí)冊(cè)答案