【題目】數(shù)學(xué)家歐拉在1765年提出,任意三角形的外心、重心、垂心位于同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)為
A. (-4,0) B. (-3,-1) C. (-5,0) D. (-4,-2)
【答案】A
【解析】
設(shè)點(diǎn)的坐標(biāo)為C(m,n),由重心公式得到關(guān)于m,n的方程,然后利用外心與點(diǎn)B的距離與外心與點(diǎn)C的距離相等得到關(guān)于m,n的方程,兩方程聯(lián)立即可確定頂點(diǎn)C的坐標(biāo).
設(shè)C(m,n),由重心公式,可得△ABC的重心為,
代入歐拉直線有:,
整理得m-n+4=0 ①.
AB的中點(diǎn)為(1,2),kAB==-2,
AB的中垂線方程為y-2=(x-1),即x-2y+3=0,
聯(lián)立可得:,所以△ABC的外心為(-1,1),
外心與點(diǎn)B的距離:,
外心與點(diǎn)B的距離與外心與點(diǎn)C的距離相等,則:
(m+1)2+(n-1)2=10,整理得m2+n2+2m-2n=8 ②,
聯(lián)立①②,可得m=-4,n=0或m=0,n=4.
當(dāng)m=0,n=4時(shí),B,C兩點(diǎn)重合,舍去,
當(dāng)m=-4,n=0時(shí)滿足題意.
所以點(diǎn)C的坐標(biāo)為(-4,0).
本題選擇A選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人的眼皮有單眼皮與雙眼皮之分,這是由對(duì)應(yīng)的基因決定的.生物學(xué)上已經(jīng)證明:決定眼皮單雙的基因有兩種,一種是顯性基因(記為),另一種是隱性基因(記為);基因總是成對(duì)出現(xiàn)(如、、、),而成對(duì)的基因中,只要出現(xiàn)了顯性基因,那么這個(gè)人就一定是雙眼皮(也就是說(shuō),“單眼皮”的充要條件是“成對(duì)的基因是”);如果不發(fā)生基因突變的話,成對(duì)的基因中,一個(gè)來(lái)自父親,另一個(gè)來(lái)自母親,但父母親提供基因時(shí)都是隨機(jī)的.有一對(duì)夫妻,兩人成對(duì)的基因都是,不考慮基因突變,求他們的孩子是單眼皮的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有紅、白球各一個(gè),每次任取一個(gè),有放回地摸三次,求基本事件的個(gè)數(shù)n,寫出所有基本事件的全集I,并計(jì)算下列事件的概率:
(1)三次顏色恰有兩次同色;
(2)三次顏色全相同;
(3)三次摸到的紅球多于白球.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形,且平面, ,為的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積;
(3)探究在上是否存在點(diǎn),使得平面,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了110人,其中女性50人,男性60人.女性中有30人主要的休閑方式是看電視,另外20人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外40人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
下面臨界值表供參考:
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:K2=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關(guān)于的不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張坐標(biāo)紙上一已作出圓及點(diǎn),折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)若直線與軌跡交于兩個(gè)不同的點(diǎn),且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga()(0<a<1,b>0)為奇函數(shù),當(dāng)x∈(﹣1,a]時(shí),函數(shù)y=f(x)的值域是(﹣∞,1].
(1)確定b的值;
(2)證明函數(shù)y=f(x)在定義域上單調(diào)遞增,并求a的值;
(3)若對(duì)于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com