精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C)的左、右焦點分別為,,點P在橢圓上,,橢圓的離心率.

1)求橢圓C的標準方程;

2AB是橢圓C上與點P不重合的任意兩點,若的重心是坐標原點O,試證明:的面積為定值,并求出該定值.

【答案】1;(2)證明詳見解析,該定值為.

【解析】

1)根據待定系數法求出橢圓方程;

2)設直線的方程為,聯立方程組求出弦長,求出P的距離,得出三角形的面積關于m的函數,從而得出面積的最大值.

1)∵,∴,∴,

,∴,

∴橢圓C的標準方程為:;

2最多只有1條邊所在直線與x軸垂直,

不妨設所在直線與x軸不垂直,其方程為

(∵的重心是O,∴O不在直線上,

得,

、,則

,

,

從而

,∵的重心是坐標原點O

,

,

在橢圓上,

,且符合,

到直線的距離為:

的面積,

,得

為常數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若一個三位數的各位數字中,有且僅有兩個數字一樣,我們就把這樣的三位數定義為單重數”.例如:232114等,則不超過200單重數中,從小到大排列第25單重數是(

A.166B.171C.181D.188

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正三棱柱中,,P的中點.

1)求平面將三棱柱分成的兩部分的體積之比;

2)求平面與平面ABC所成二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高三年級期末考試的學生中抽出60名學生,其成績(均為整數)的頻率分布直方圖如圖所示:

1)估計這次考試的及格率(60分及以上為及格)和平均分;

2)按分層抽樣從成績是80分以上(包括80分)的學生中選取6人,再從這6人中選取兩人作為代表參加交流活動,求他們在不同分數段的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的奇數項是首項為1的等差數列,偶數項是首項為2的等比數列.數列項和為,且滿足

(1)求數列的通項公式;

(2)求數列項和;

(3)在數列中,是否存在連續(xù)的三項,按原來的順序成等差數列?若存在,求出所有滿足條件的正整數的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某企業(yè)生產某種產品的年固定成本為200萬元,且每生產1噸該產品需另投入12萬元,現假設該企業(yè)在一年內共生產該產品噸并全部銷售完.每噸的銷售收入為萬元,且.

1)求該企業(yè)年總利潤(萬元)關于年產量(噸)的函數關系式;

2)當年產量為多少噸時,該企業(yè)在這一產品的生產中所獲年總利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右頂點為為上頂點,點為橢圓上一動點.

1)若,求直線軸的交點坐標;

2)設為橢圓的右焦點,過點軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,點P到兩點(0,),(0,)的距離之和為4,設點P的軌跡為C,直線ykx+1A交于A,B兩點.

1)寫出C的方程;

2)若,求k的值.

查看答案和解析>>

同步練習冊答案