【題目】已知橢圓的離心率,一條準(zhǔn)線方程為

⑴求橢圓的方程;

⑵設(shè)為橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),且

①當(dāng)直線的傾斜角為時(shí),求的面積;

②是否存在以原點(diǎn)為圓心的定圓,使得該定圓始終與直線相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】12①SGOH②x2y2

【解析】

(1)因?yàn)?/span>,,a2b2c2,

解得a3b,所以橢圓方程為

(2)①解得

所以OGOH,所以SGOH.

假設(shè)存在滿足條件的定圓,設(shè)圓的半徑為R,則OG·OHR·GH,

因?yàn)?/span>OG2OH2GH2,故,

當(dāng)OGOH的斜率均存在時(shí),不妨設(shè)直線OG方程為ykx,

所以OG2,

同理可得OH2,(OG2中的k換成-可得)R,

當(dāng)OGOH的斜率有一個(gè)不存在時(shí),可得

故滿足條件的定圓方程為:x2y2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax21)﹣lnx

1)若yfx)在x2處的切線與y垂直,求a的值;

2)若fx≥0[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),直線相切,求的值;

(2)若函數(shù)內(nèi)有且只有一個(gè)零點(diǎn),求此時(shí)函數(shù)的單調(diào)區(qū)間;

(3)當(dāng)時(shí),若函數(shù)上的最大值和最小值的和為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左焦點(diǎn)為,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且APF1周長(zhǎng)的最小值為6,則雙曲線的離心率為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點(diǎn),且,試問(wèn)點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率,且過(guò)點(diǎn)

(1)求橢圓的方程;

(2)如圖,過(guò)橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn)不同于點(diǎn)),且,為棱上的點(diǎn),且

求證:(1)平面平面;

2平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且橢圓的離心率

1)求橢圓的標(biāo)淮方程;

2)直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn),橢圓的右頂點(diǎn)為,試判斷是否能為直角.若能為直角,求出直線的方程,若不行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案