【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.
【答案】
(1)解法(1)因?yàn)镻D⊥底面ABCD,所以PD⊥BC,
由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,
所以BC⊥平面PCD.而DE平面PDC,所以BC⊥DE.
又因?yàn)镻D=CD,點(diǎn)E是PC的中點(diǎn),所以DE⊥PC.
而PC∩CB=C,所以DE⊥平面PBC.而PB平面PBC,所以PB⊥DE.
又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.
由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個(gè)面都是直角三角形,
即四面體BDEF是一個(gè)鱉臑,其四個(gè)面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB.
(解法2)
以D為原點(diǎn),射線DA,DC,DP分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系.設(shè)PD=DC=1,BC=λ,
則D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0), =(λ1,﹣1),點(diǎn)E是PC的中點(diǎn),所以E(0, , ), =(0, , ),
于是 =0,即PB⊥DE.
又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.
因 =(0,1,﹣1), =0,則DE⊥PC,所以DE⊥平面PBC.
由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個(gè)面都是直角三角形,
即四面體BDEF是一個(gè)鱉臑,其四個(gè)面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB.
(2)解法1)如圖1,
在面BPC內(nèi),延長BC與FE交于點(diǎn)G,則DG是平面DEF與平面ACBD的交線.
由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.
又因?yàn)镻D⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.
所以DG⊥DF,DG⊥DB
故∠BDF是面DEF與面ABCD所成二面角的平面角,
設(shè)PD=DC=1,BC=λ,有BD= ,
在Rt△PDB中,由DF⊥PB,得∠DPB=∠FDB= ,
則 tan =tan∠DPF= = = ,解得 .
所以 = =
故當(dāng)面DEF與面ABCD所成二面角的大小為 時(shí), = .
(解法2)
由PD⊥底面ABCD,所以 =(0,0,1)是平面ACDB的一個(gè)法向量;
由(Ⅰ)知,PB⊥平面DEF,所以 =(﹣λ,﹣1,1)是平面DEF的一個(gè)法向量.
若面DEF與面ABCD所成二面角的大小為 ,
則運(yùn)用向量的數(shù)量積求解得出cos = = ,
解得 .所以所以 = =
故當(dāng)面DEF與面ABCD所成二面角的大小為 時(shí), =
【解析】解法1)(1)直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個(gè)面都是直角三角形,確定直角.(2)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可.解法2)(1)以D為原點(diǎn),射線DA,DC,DP分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,運(yùn)用向量的數(shù)量積判斷即可.2)由PD⊥底面ABCD,所以 =(0,0,1)是平面ACDB的一個(gè)法向量;由(Ⅰ)知,PB⊥平面DEF,所以 =(﹣λ,﹣1,1)是平面DEF的一個(gè)法向量.根據(jù)數(shù)量積得出夾角的余弦即可得出所求解的答案.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.
(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d的一個(gè)近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個(gè)是( )
A.d≈
B.d≈
C.d≈
D.d≈
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),ACBC,且AC=BC.
(1)求證:AM平面EBC;
(2)求直線AB與平面EBC所成角的大小,
(3)求二面角A-BE-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸入的x為4,則運(yùn)行的次數(shù)與輸出x的值分別為( )
A.5.730
B.5.729
C.4.244
D.4.243
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對城市人和農(nóng)村人進(jìn)行了買房心理預(yù)測調(diào)研,用簡單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房 | 不買房 | 糾結(jié) | |
城市人 | 5 | 15 | |
農(nóng)村人 | 20 | 10 |
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)城市人的某項(xiàng)收入指標(biāo),假設(shè)一個(gè)買房人的指標(biāo)算作3,一個(gè)糾結(jié)人的指標(biāo)算作2,一個(gè)不買房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點(diǎn)A、B,使得△OAB是以原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,則實(shí)數(shù)a的取值范圍是( )
A.(e,e2)
B.(e, )
C.(1,e2)
D.[1,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 ,設(shè){Sn}的前n項(xiàng)和為Tn , T2017= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com