【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名青少年進行調(diào)查,得到如下列聯(lián)表:

常喝

不常喝

總計

肥胖

2

不肥胖

18

總計

30

已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為
(1)請將列聯(lián)表補充完整;
(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
獨立性檢驗臨界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中n=a+b+c+d

【答案】
(1)解:設常喝碳酸飲料且肥胖的青少年人數(shù)為x,則 = 解得x=6

列聯(lián)表如下:

常喝

不常喝

總計

肥胖

6

2

8

不肥胖

4

18

22

總計

10

20

30


(2)解:由(1)中列聯(lián)表中的數(shù)據(jù)可求得隨機變量k2的觀測值:

k= ≈8.523>7.789

因此有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關


【解析】(1)根據(jù)題意結(jié)合已知條件觀察圖表即可求出常喝碳酸飲料且肥胖的青少年人數(shù)x的值,填表即可。(2)由(1)中聯(lián)表中的數(shù)據(jù)計算出隨機變量K2 觀測值,然后與正常值進行對比得出結(jié)論即可。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中,角的對邊分別為,且的面積,向量.

(Ⅰ)求大。

(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 為參數(shù))以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線 的極坐標方程為 .
(1)將曲線 的極坐標方程化為直角坐標方程;
(2)設點M的直角坐標為 ,直線l與曲線C的交點為A,B,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù) 的圖象上每個點的橫坐標擴大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中社團進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次是否開通“微博”的調(diào)查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調(diào)查分別得到如圖所示統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
完成以下問題:
(Ⅰ)補全頻率分布直方圖并求na , p的值;
(Ⅱ)從[40,50)歲年齡段的“時尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡時尚達人大賽,其中選取3人作為領隊,記選取的3名領隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P( ,1),直線l的參數(shù)方程為 t為參數(shù))若以O為極點,以Ox為極軸,選擇相同的單位長度建立極坐標系,則曲線C的極坐標方程為ρ= cos(θ-
(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角,的對邊,,滿足

(1)求的大小;

(2)若, C角最小,求的面積S.

查看答案和解析>>

同步練習冊答案