已知數(shù)列的前項(xiàng)和為,且對(duì)任意的都有 ,
(Ⅰ)求數(shù)列的前三項(xiàng);
(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明

(Ⅰ),,
(Ⅱ)猜想,用數(shù)學(xué)歸納法。

解析試題分析:(Ⅰ)當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),
,                4分
(Ⅱ)由(Ⅰ)猜想,下面用數(shù)學(xué)歸納法證之           6分
1)當(dāng)時(shí),左邊=,右邊=,左邊=右邊,猜想成立;         8分
2)當(dāng)時(shí),猜想成立,即          9分
那么當(dāng)時(shí),由已知可得
從而

所以當(dāng)時(shí),猜想也成立,                11分
綜上:對(duì)數(shù)列的通項(xiàng)公式為…………12分
考點(diǎn):歸納、猜想、證明,數(shù)學(xué)歸納法。
點(diǎn)評(píng):中檔題,本題比較典型!皻w納、猜想、證明”是發(fā)明創(chuàng)造的良好方法。利用數(shù)學(xué)歸納法證明過(guò)程中,要注意“兩步一結(jié)”規(guī)范作答,同時(shí),要注意應(yīng)用“歸納假設(shè)”,否則,不是數(shù)學(xué)歸納法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 若,設(shè)數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,對(duì)于任意,等式:恒成立,其中常數(shù)
(1)求的值;
(2)求證:數(shù)列為等比數(shù)列;
(3)如果關(guān)于的不等式的解集為,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)在函數(shù)圖象上,過(guò)點(diǎn)的切線的方向向量為>0).
(Ⅰ)求數(shù)列的通項(xiàng)公式,并將化簡(jiǎn);
(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為Sn,若≤Sn對(duì)任意正整數(shù)n均成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列的前項(xiàng)和為,,且、成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列是一個(gè)首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是等差數(shù)列,公差的前項(xiàng)和,已知.
(1)求數(shù)列的通項(xiàng)公式
(2)令=,求數(shù)列的前項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)滿足以下兩個(gè)條件的有窮數(shù)列階“期待數(shù)列”:
;②
(1)若等比數(shù)列 ()階“期待數(shù)列”,求公比
(2)若一個(gè)等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為
(。┣笞C:;
(ⅱ)若存在使,試問(wèn)數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,a1=1,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證:<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)正項(xiàng)數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項(xiàng)公式;(2)若的前三項(xiàng),記數(shù)列數(shù)列的前n項(xiàng)和為

查看答案和解析>>

同步練習(xí)冊(cè)答案