用數(shù)學(xué)歸納法證明不等式,第二步由k到k+1時(shí)不等式左邊需增加(      )

A. B.
C. D.

D

解析試題分析:根據(jù)題意,由于證明不等式,第二步由k到k+1時(shí)不等式左邊需增加,由于左側(cè)表示的為項(xiàng)的和,因此則增加了,故答案為D.
考點(diǎn):數(shù)學(xué)歸納法
點(diǎn)評(píng):主要是考查了數(shù)學(xué)歸納法的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用反證法證明“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”時(shí),下列假設(shè)正確的是   (   )

A.假設(shè)a,b,c都是奇數(shù)或至少有兩個(gè)偶數(shù)
B.假設(shè)a,b,c都是偶數(shù)
C.假設(shè)a,b,c至少有兩個(gè)偶數(shù)
D.假設(shè)a, b,c都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

個(gè)正整數(shù)、、、…、)任意排成列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算各行和各列中的任意兩個(gè)數(shù)、)的比值,稱這些比值中的最小值為這個(gè)數(shù)表的“特征值”.當(dāng)時(shí),數(shù)表的所有可能的“特征值”最大值為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在平面上,我們?nèi)绻靡粭l直線去截正方形的一個(gè)角,那么截下的一個(gè)直角三角形,按圖所標(biāo)邊長(zhǎng),由勾股定理有:c2=a2+b2。設(shè)想正方形換成正方體,把截線換成如下圖的截面,這時(shí)從正方體上截下三條側(cè)棱兩兩垂直的三棱錐OLMN,如果用S1,S2,S3表示三個(gè)側(cè)面面積,S4表示截面面積,那么你類比得到的結(jié)論是                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電. 屬于哪種推理? (     )

A.演繹推理B.類比推理C.合情推理D.歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用反證法證明命題:“已知,若可被5整除,則中至少有一個(gè)能被5整除”時(shí),反設(shè)正確的是(     )

A.都不能被5整除 B.都能被5整除 
C.中有一個(gè)不能被5整除  D.中有一個(gè)能被5整除 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

下列說(shuō)法正確的個(gè)數(shù)是 (   )
①演繹推理是由一般到特殊的推理
②演繹推理得到的結(jié)論一定是正確的
③演繹推理的一般模式是“三段論”形式
④演繹推理得到的結(jié)論的正誤與大前提、小前提和推理形式有關(guān)

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

用數(shù)學(xué)歸納法證明)時(shí),從“n=”到“n=”的證明,左邊需增添的代數(shù)式是___________. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

有一段演繹推理是這樣的:“若直線平行于平面,則該直線平行于平面內(nèi)所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”,結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?  )

A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 
C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤 

查看答案和解析>>

同步練習(xí)冊(cè)答案