如圖3所示,
,
M是棱
的中點,
N是棱
的中點.
(1)求異面直線
所成角的正弦值;
(2)求
的體積.
(1)
,
GM與
的交點為H,聯(lián)結BH,如圖所示.……1分
∵
是正方體,
G、N是中點,
∴
,即
ABGN為平行四邊形.
∴
BG||AN,
所成的角.……………………3分
又正方體的棱長為
a,可得
,
.∴
. ………5分
∴
.…………6分
(2)∵
∴
.8分
∵
,∴
.
∴
的高.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
的底面
是正方形,
平面
,
為
上的點,且
.
(1)證明:
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面
面
;
(2)求
與
所成的角;
(3)求面
與面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,點P是正方形ABCD外一點,PA
平面ABCD,PA=AB=2,且E、F分別是AB、PC的中點.
(1)求證:EF//平面PAD;
(2)求證:EF
平面PCD;
(3)求:直線BD與平面EFC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設平面α與向量a=(-1,2,-4)垂直,平面β與向量b=(-2, 4, -8)垂直,則平面α與β位置關系是______ __.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知平面
的法向量
,平面
的法向量
,若
,則
k的值為
A.5 | B.4 |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在直三棱柱
中,底面是等腰直角三角形,
,側棱
,D,E分別是
與
的中點,點E在平面
ABD上的射影是
的重心G.則
與平面
ABD所成角的余弦值 ( )
查看答案和解析>>