【題目】已知等差數(shù)列滿足.
(1)求的通項公式;
(2)設等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?
【答案】(1) ;(2)63.
【解析】試題分析:本題主要考查等差數(shù)列、等比數(shù)列的通項公式等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.(Ⅰ)利用等差數(shù)列的通項公式,將轉化成和,解方程得到和的值,直接寫出等差數(shù)列的通項公式即可;(Ⅱ)先利用第一問的結論得到和的值,再利用等比數(shù)列的通項公式,將和轉化為和,解出和的值,得到的值,再代入到上一問等差數(shù)列的通項公式中,解出的值,即項數(shù).
試題解析:(Ⅰ)設等差數(shù)列的公差為.
因為,所以.
又因為,所以,故.
所以 .
(Ⅱ)設等比數(shù)列的公比為.
因為, ,
所以, .
所以.
由,得.
所以與數(shù)列的第項相等.
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成
績,整理數(shù)據(jù)并按分數(shù)段,,,,,進行分
組,已知測試分數(shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點值代替該組中的每個數(shù)據(jù),則得到體育成績的折
線圖如下:
(1)若體育成績大于或等于70分的學生為“體育良好”,已知該校高一年級有1000名學生,試估計該校高一年級學生“體育良好”的人數(shù);
(2)為分析學生平時的體育活動情況,現(xiàn)從體育成績在和的樣本學生中隨機抽取2人,求所抽取的2名學生中,至少有1人為“體育良好”的概率;
(3)假設甲、乙、丙三人的體育成績分別為,,,且,,
,當三人的體育成績方差最小時,寫出,,的值(不要求證明).
注:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若與成線性相關,則某天售出9箱水時,預計收入為多少元?
(2)甲乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和的分布列及數(shù)學期望;
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,若函數(shù)在上的最小值為0,求的值;
(3)當時,若函數(shù)在上既有最大值又有最小值,且恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一家商店使用一架兩臂不等長的天平稱黃金,一位顧客到店里購買黃金,售貨員先將的砝碼放在天平左盤中,取出一些黃金放在天平右盤中使天平平衡;再將的砝碼放在天平右盤中,再取出一些黃金放在天平左盤中使天平平衡;最后將兩次稱得的黃金交給顧客.你認為顧客購得的黃金是小于,等于,還是大于?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點。
(1)證明:;
(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將圖象上所有點的縱坐標伸長到原來的倍(橫坐標不變),再將所得到的圖象向右平移個單位長度.
(1)求函數(shù)的解析式,并求其圖象的對稱軸方程;
(2)已知關于的方程在內(nèi)有兩個不同的解、,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角中,若,且能蓋住的最小圓的面積為,求周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將給定的一個數(shù)列:,,,…按照一定的規(guī)則依順序用括號將它分組,則可以得到以組為單位的序列.如在上述數(shù)列中,我們將作為第一組,將,作為第二組,將,,作為第三組,…,依次類推,第組有個元素(),即可得到以組為單位的序列:,,,…,我們通常稱此數(shù)列為分群數(shù)列.其中第1個括號稱為第1群,第2個括號稱為第2群,第3個數(shù)列稱為第3群,…,第個括號稱為第群,從而數(shù)列稱為這個分群數(shù)列的原數(shù)列.如果某一個元素在分群數(shù)列的第個群眾,且從第個括號的左端起是第個,則稱這個元素為第群眾的第個元素.已知數(shù)列1,1,3,1,3,9,1,3,9,27,…,將數(shù)列分群,其中,第1群為(1),第2群為(1,3),第3群為(1,3,),…,以此類推.設該數(shù)列前項和,若使得成立的最小位于第個群,則( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com