已知a∈R,函數(shù)f(x)=xln(-x)+(a-1)x,(注:[ln(-x)] ′=
(Ⅰ)若f(x)在x=-e處取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-e2,-e-1]上的最大值g(a)。
解:(Ⅰ),
由題意知x=-e時,,即:, ∴a=-1,
,
,可得x=-e;
,可得x<-e;
,可得-e<x<0;
∴f(x)在(-∞,-e)上是增函數(shù),在(-e,0)上是減函數(shù)。
(Ⅱ),

,
①若a≥1,則恒成立,此時f(x)在上是增函數(shù),
;
②若a≤-2,則恒成立,此時f(x)在上是減函數(shù),
 ;
③若-2<a<1,則令,可得
是減函數(shù),
∴當(dāng)時,;當(dāng)時,,
∴f(x)在上左增右減,

綜上:。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
(Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對數(shù)的底).
(1)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

同步練習(xí)冊答案