【題目】設(shè).
(1)求的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值.
【答案】(1) 函數(shù)的單調(diào)增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)-6, .
【解析】
試題分析:(1)根據(jù)定積分的運(yùn)算法則可得, 求出,令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)根據(jù)單調(diào)性求出極值,比較極值與區(qū)間端點(diǎn)函數(shù)值的大小即可得到函數(shù)在上的最值.
試題解析:依題意得F(x)=(t2+2t-8)dt==x3+x2-8x,定義域是(0,+∞).
(1)F′(x)=x2+2x-8,令F′(x)>0,得x>2或x<-4,令F′(x)<0,得-4<x<2,
由于定義域是(0,+∞),所以函數(shù)的單調(diào)增區(qū)間是(2,+∞),單調(diào)遞減區(qū)間是(0,2).
(2)令F′(x)=0,得x=2(x=-4舍去),由于F(1)=-,F(2)=-,F(3)=-6,
所以F(x)在[1,3]上的最大值是F(3)=-6,最小值是F(2)=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點(diǎn),未必是PQ與雙曲線的切點(diǎn))與拋物線的準(zhǔn)線交于Q,F(xiàn)(0, ),若 |PQ|= |PF|,則拋物線的方程是( )
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查50人,并將調(diào)查情況進(jìn)行整理后制成如表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,60) |
頻數(shù) | 10 | 10 | 10 | 10 | 10 |
贊成人數(shù) | 3 | 5 | 6 | 7 | 9 |
(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)以下2×2列聯(lián)表:
青年人 | 中年人 | 合計(jì) | |
不贊成 |
|
|
|
贊成 |
|
|
|
合計(jì) |
|
|
|
(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為贊成“車(chē)柄限行”與年齡有關(guān)? 附: ,其中n=a+b+c+d
獨(dú)立檢驗(yàn)臨界值表:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
(3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機(jī)選取1人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車(chē)輛限行”態(tài)度的人員為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)= ,稱(chēng)為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題: ①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對(duì)任意的實(shí)數(shù)x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
(Ⅰ)求證:△PAB為直角三角形;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)求不等式的解集;
(2)若對(duì)一切,均有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x3+x,x∈R,當(dāng) 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是( )
A.(0,1)
B.(﹣∞,0)
C.
D.(﹣∞,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com