【題目】設(shè)

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

【答案】(1) 函數(shù)的單調(diào)增區(qū)間是,單調(diào)遞減區(qū)間是.

(2)-6, .

【解析】

試題分析:(1)根據(jù)定積分的運(yùn)算法則可得, 求出,令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)根據(jù)單調(diào)性求出極值,比較極值與區(qū)間端點(diǎn)函數(shù)值的大小即可得到函數(shù)上的最值.

試題解析:依題意得F(x)=(t2+2t-8)dt==x3+x2-8x,定義域是(0,+∞).

(1)F′(x)=x2+2x-8,令F′(x)>0,得x>2或x<-4,令F′(x)<0,得-4<x<2,

由于定義域是(0,+∞),所以函數(shù)的單調(diào)增區(qū)間是(2,+∞),單調(diào)遞減區(qū)間是(0,2).

(2)令F′(x)=0,得x=2(x=-4舍去),由于F(1)=-,F(2)=-,F(3)=-6,

所以F(x)在[1,3]上的最大值是F(3)=-6,最小值是F(2)=-.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點(diǎn),未必是PQ與雙曲線的切點(diǎn))與拋物線的準(zhǔn)線交于Q,F(xiàn)(0, ),若 |PQ|= |PF|,則拋物線的方程是(
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查50人,并將調(diào)查情況進(jìn)行整理后制成如表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,60)

頻數(shù)

10

10

10

10

10

贊成人數(shù)

3

5

6

7

9


(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)以下2×2列聯(lián)表:

青年人

中年人

合計(jì)

不贊成

贊成

合計(jì)


(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為贊成“車(chē)柄限行”與年齡有關(guān)? 附: ,其中n=a+b+c+d
獨(dú)立檢驗(yàn)臨界值表:

P(K2≥k)

0.100

0.050

0.025

0.010

k0

2.706

3.841

5.024

6.635


(3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機(jī)選取1人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車(chē)輛限行”態(tài)度的人員為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)= ,稱(chēng)為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題: ①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,的中點(diǎn).

求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對(duì)任意的實(shí)數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
(Ⅰ)求證:△PAB為直角三角形;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對(duì)一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3+x,x∈R,當(dāng) 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1)
B.(﹣∞,0)
C.
D.(﹣∞,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案