設(shè)橢圓=1(a>b>0)的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)(  )

(A)必在圓x2+y2=2內(nèi)

(B)必在圓x2+y2=2上

(C)必在圓x2+y2=2外

(D)以上三種情形都有可能

A.由題意知:x1+x2=-,x1x2=-,

設(shè)坐標(biāo)原點(diǎn)到P(x1,x2)的距離為d,則

d2=x+x=(x1+x2)2-2x1x2.

∵e=,∴,a=2c,

∴d2.

1<d2<2,∴1<d<,∴點(diǎn)P在圓x2+y2=2內(nèi).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(浙江卷) 題型:044

已知m>1,直線l:x-my-2=0,橢圓C:()2+y2=4,F(xiàn)1,F(xiàn)2分別為橢圓C的左右焦點(diǎn).

(Ⅰ)當(dāng)直線l過(guò)右焦點(diǎn)F2時(shí),求直線l的方程;

(Ⅱ)設(shè)直線l與橢圓C交與A,B兩點(diǎn),△AF1F2.△BF1F2的重心分別為G,H.若原點(diǎn)O在以線段GH為直徑的的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省延邊州2012屆高三下學(xué)期復(fù)習(xí)質(zhì)量檢測(cè)數(shù)學(xué)文科試題 題型:044

已知點(diǎn)A(0,-1)在橢圓G:(a>b>0)上,設(shè)橢圓G與x軸的正半軸的交點(diǎn)為B,其右焦點(diǎn)為F,且∠AFB=,過(guò)x軸上一點(diǎn)M(m,0)作一條不垂直于y軸的直線l交橢圓G于C,D兩點(diǎn).

(Ⅰ)求橢圓G的方程;

(Ⅱ)以CD為直徑的圓恒過(guò)B點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省洛陽(yáng)市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知橢圓E:(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上

   (1)求橢圓E的方程;

   (2)設(shè)l1,l2是過(guò)點(diǎn)G(,0)且互相垂直的兩條直線,l1交E于A, B兩點(diǎn),l2交E于C,D兩點(diǎn),求l1的斜率k的取值范圍;

   (3)在(2)的條件下,設(shè)AB,CD的中點(diǎn)分別為M,N,試問(wèn)直線MN是否恒過(guò)定點(diǎn)?

若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:=1(a>b>0)的左焦點(diǎn)為F(-1,0),離心率為,過(guò)點(diǎn)F的直線l與橢圓C交于A、B兩點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)過(guò)點(diǎn)F不與坐標(biāo)軸垂直的直線交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問(wèn)中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

第二問(wèn)中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案