(07年湖北卷理)(14分)
已知為正整數(shù),
(I)用數(shù)學(xué)歸納法證明:當(dāng)時,;
(II)對于,已知,求證:,;
(III)求出滿足等式的所有正整數(shù).
本小題主要考查數(shù)學(xué)歸納法、數(shù)列求和、不等式等基礎(chǔ)知識和基本的運算技能,考查分析問題能力和推理能力.
解析:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:
()當(dāng)時,原不等式成立;當(dāng)時,左邊,右邊,
因為,所以左邊右邊,原不等式成立;
()假設(shè)當(dāng)時,不等式成立,即,則當(dāng)時,
,,于是在不等式兩邊同乘以得
,
所以.即當(dāng)時,不等式也成立.
綜合()()知,對一切正整數(shù),不等式都成立.
(Ⅱ)證:當(dāng)時,由(Ⅰ)得,
于是,.
(Ⅲ)解:由(Ⅱ)知,當(dāng)時,
,
.
即.即當(dāng)時,不存在滿足該等式的正整數(shù).
故只需要討論的情形:
當(dāng)時,,等式不成立;
當(dāng)時,,等式成立;
當(dāng)時,,等式成立;
當(dāng)時,為偶數(shù),而為奇數(shù),故,等式不成立;
當(dāng)時,同的情形可分析出,等式不成立.
綜上,所求的只有.
解法2:(Ⅰ)證:當(dāng)或時,原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:
當(dāng),且時,,. 、
()當(dāng)時,左邊,右邊,因為,所以,即左邊右邊,不等式①成立;
()假設(shè)當(dāng)時,不等式①成立,即,則當(dāng)時,
因為,所以.又因為,所以.
于是在不等式兩邊同乘以得
,
所以.即當(dāng)時,不等式①也成立.
綜上所述,所證不等式成立.
(Ⅱ)證:當(dāng),時,,,
而由(Ⅰ),,
.
(Ⅲ)解:假設(shè)存在正整數(shù)使等式成立,
即有. ②
又由(Ⅱ)可得
,與②式矛盾.
故當(dāng)時,不存在滿足該等式的正整數(shù).
下同解法1.
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖北卷理)已知兩個等差數(shù)列和的前項和分別為A和,
且,則使得 為整數(shù)的正整數(shù)的個數(shù)是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖北卷理)已知直線(是非零常數(shù))與圓有公共點,且公共點的橫坐標(biāo)和縱坐標(biāo)均為整數(shù),那么這樣的直線共有( )
A.60條 B.66條 C.72條 D.78條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖北卷理)已知直線(是非零常數(shù))與圓有公共點,且公共點的橫坐標(biāo)和縱坐標(biāo)均為整數(shù),那么這樣的直線共有( )
A.60條 B.66條 C.72條 D.78條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖北卷理)(12分)
已知的面積為,且滿足,設(shè)和的夾角為.
(I)求的取值范圍;
(II)求函數(shù)的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com