【題目】如圖,在直三棱柱中,,分別是,的中點.

1)求證:平面;

2)求證:平面平面

【答案】詳見解析詳見解析

【解析】

試題分析:證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾知識,如三角形中位線性質(zhì),及利用柱體性質(zhì),如上下底面對應(yīng)邊相互平行證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明,往往需要利用線面垂直判定與性質(zhì)定理進(jìn)行多次轉(zhuǎn)化:棱柱性質(zhì)得側(cè)棱垂直于底面底面,轉(zhuǎn)化為線線垂直;又根據(jù)線線平行,將線線垂直進(jìn)行轉(zhuǎn)化,根據(jù)線面垂直判定定理得平面

試題解析:證明:(1)因為,分別是,的中點,所以, ...........2

又因為在三棱柱中,,所以. ...............4

平面平面,所以平面. ...............6

2)在直三棱柱中,底面,

底面,所以. .............8

,,所以, ..........10

平面,且,所以平面. ...............12

平面,所以平面平面 ............14

(注:第(2)小題也可以用面面垂直的性質(zhì)定理證明平面,類似給分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) , 是非零向量,已知命題p:若 =0, =0,則 =0;命題q:若 ,則 ,則下列命題中真命題是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;

(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

(3)求續(xù)保人本年度平均保費的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖),雙曲線C1 過點P且離心率為

(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點上,在梯形區(qū)域內(nèi)部展示文物,是玻璃幕墻,游客只能在區(qū)域內(nèi)參觀.在上點處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭.為監(jiān)控角,其中、在線段(含端點)上,且點在點的右下方.經(jīng)測量得知:米,米,米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域的面積為平方米.

(1)求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級共有學(xué)生名,為了解學(xué)生某次月考的情況,抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,繪制出如下尚未完成的頻率分布表:

分組

頻數(shù)

頻率

(1)補充完整題中的頻率分布表;

(2)若成績在為優(yōu)秀,估計該校高三年級學(xué)生在這次月考中,成績優(yōu)秀的學(xué)生約為多少人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于100cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實常數(shù),函數(shù).

(1)若是減函數(shù),求實數(shù)的取值范圍;

(2)當(dāng)時函數(shù)有兩個不同的零點求證:.(注:為自然對數(shù)的底數(shù));

(3)證明

查看答案和解析>>

同步練習(xí)冊答案