已知點列在直線上,P1為直線軸的交點,等差數(shù)列的公差為1 。
(1)求、的通項公式;;
(2)若,試證數(shù)列為等比數(shù)列,并求的通項公式。
(3)

(1)(2)
是以2為公比,4為首項的等比數(shù)列.
(3)1

解析試題分析:(1)在直線
∵P1為直線l與y軸的交點,∴P1(0,1) 
又?jǐn)?shù)列的公差為1 
(2)
是以2為公比,4為首項的等比數(shù)列.
(3)


考點:本題考查了數(shù)列的通項及前n項和
點評:等差數(shù)列的通項公式及應(yīng)用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標(biāo)實施的深入,高考關(guān)注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個特征向量是e1=
1
1
,屬于λ2的一個特征向量是e2=
-1
2
,點A對應(yīng)的列向量是a=
1
4

(Ⅰ)設(shè)a=me1+ne2,求實數(shù)m,n的值.
(Ⅱ)求點A在M5作用下的點的坐標(biāo).

(B)4-2極坐標(biāo)與參數(shù)方程
已知直線l的極坐標(biāo)方程為ρsin(θ-
π
3
)=3
,曲線C的參數(shù)方程為
x=cosθ
y=3sinθ
,設(shè)P點是曲線C上的任意一點,求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a為正實數(shù),在曲線Cny=
nx
上一點P(xn,yn)處的切線Ln總經(jīng)過定點(-a,0),(n∈N*).求證點列:P1,P2,…,Pn在同一直線上.(關(guān)鍵是:Pi在同一直線上有三種情況:①xi相同;②yi相同;③
yi
xi
為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省吉林一中2011-2012學(xué)年高三階段驗收試題數(shù)學(xué) 題型:解答題

 

(理)已知數(shù)列{an}的前n項和,且=1,

.

(I)求數(shù)列{an}的通項公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大小;

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線段AC上,滿足=.

(I)求點M的軌跡方程;

(II)若過B點且斜率為- 的直線與軌跡M交于

         點P,點Q(t,0)是x軸上任意一點,求當(dāng)ΔBPQ為

         銳角三角形時t的取值范圍.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)高三數(shù)學(xué)考前輔導(dǎo)材料(2)(解析版) 題型:解答題

已知常數(shù)a為正實數(shù),在曲線Cn上一點P(xn,yn)處的切線Ln總經(jīng)過定點(-a,0),(n∈N*).求證點列:P1,P2,…,Pn在同一直線上.(關(guān)鍵是:Pi在同一直線上有三種情況:①xi相同;②yi相同;③為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市高三考前輔導(dǎo)數(shù)學(xué)試卷(解析版) 題型:解答題

已知常數(shù)a為正實數(shù),在曲線Cn上一點P(xn,yn)處的切線Ln總經(jīng)過定點(-a,0),(n∈N*).求證點列:P1,P2,…,Pn在同一直線上.(關(guān)鍵是:Pi在同一直線上有三種情況:①xi相同;②yi相同;③為常數(shù))

查看答案和解析>>

同步練習(xí)冊答案