(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,

.

(I)求數(shù)列{an}的通項(xiàng)公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大小;

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點(diǎn),直線過(guò)B且垂直于AB,過(guò)A的動(dòng)直線與交于點(diǎn)C,點(diǎn)M在線段AC上,滿足=.

(I)求點(diǎn)M的軌跡方程;

(II)若過(guò)B點(diǎn)且斜率為- 的直線與軌跡M交于

         點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)ΔBPQ為

         銳角三角形時(shí)t的取值范圍.

 

 

 

 

【答案】

 (理)(1)Sn=an,∴Sn+1=an+1,an+1=Sn+1-Sn=an+1-an,∴= (n≥2)         (2’)

∴==…==1,∴an+1=n,an=n-1 (n≥2),又a1=0,∴an=n-1                  (4’)

   (2)bn+1=(1+ )n+1,bn=(1+ )n

∵<(n+1)·(1+ )n                                   (7’)

整理即得:(1+ )n<(1+ )n+1,即bn<bn+1                              (8’)

(3)由(2)知bn>bn-1­>…>b­1=                                               (10’)

又Cnr·()r=(··…)·()r≤()r,(0≤r≤n),

∴bn≤1+ +()2+…+()n=2-()n<2,∴≤bn<2                          (14’)

考點(diǎn)解析:這種“新概念”題需要較好的理解、分析能力,放縮法證明不等式是不等式證明的常用方法,也具有一定的靈活性,平時(shí)要注重概念的學(xué)習(xí),常見(jiàn)題型的積累,提高思維能力和聯(lián)想變通能力.

(文)(1)設(shè)A(a,0),B(0,b),P(x,y),由——2’

得點(diǎn)P軌跡方程為——2’

當(dāng)時(shí),C的方程為——1’

設(shè)直線方程為與C方程聯(lián)立得-1=0

易得

——2’

點(diǎn)Q到直線的距離為——2’

,當(dāng)且僅當(dāng)-2時(shí)——1’

S有最大值——2’

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2),
(1)求證:數(shù)列{an-2}是等比數(shù)列,并求通項(xiàng)an
(2)求{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an},Sn是其前n項(xiàng)和,Sn=1-an(n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列{bn}的前n項(xiàng)和為T(mén)n,bn=(n+1)an,求Tn
(3)設(shè)cn=
3an
(2-an)(1-an)
,數(shù)列{cn}的前n項(xiàng)和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}是等差數(shù)列,且a1=-2,a1+a2+a3=-12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求數(shù)列{an(bn+1)}的前n項(xiàng)和Tn的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}滿足a1=2,前n項(xiàng)和為Snan+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1(n≥1),試求數(shù)列{bn}前3項(xiàng)的和T3;
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說(shuō)明理由;
(3)當(dāng)p=
1
2
時(shí),對(duì)任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}前n項(xiàng)和Sn=-ban+1-
1
(1+b)n
其中b是與n無(wú)關(guān)的常數(shù),且0<b<1,若
limSn
n→∞
存在,則
limSn=
n→∞
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案