(本題滿(mǎn)分16滿(mǎn)分)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為為非零常數(shù).已知對(duì)任意正整數(shù),當(dāng)時(shí),總成立.

(1)證明:數(shù)列是等比數(shù)列;(2)  若正整數(shù)成等差數(shù)列,求證:

(1)略(2)略


解析:

(1)證明:因?yàn)楫?dāng)時(shí),總成立.所以當(dāng)≥2時(shí),,即3分又對(duì)也適合,所以當(dāng)≥2時(shí),,故數(shù)列是等比數(shù)列.  6分

(2)若,則,,,

; 8分若,,,   10分

,13分

,

15分

綜上可知,當(dāng)正整數(shù)成等差數(shù)列時(shí)不等式成立.        16分

點(diǎn)評(píng):本題考查等差、等比數(shù)列概念,數(shù)列求和、分類(lèi)討論、基本不等式,屬于難題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題滿(mǎn)分16分)兩個(gè)數(shù)列{an},{bn},滿(mǎn)足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分16滿(mǎn)分)設(shè)A、B分別為橢圓(a>b>0)的左右頂點(diǎn),P為直線x=u上不同于(u,0)的任一點(diǎn),若直線AP、BP分別與橢圓交于異于A、B的點(diǎn)M、N,研究點(diǎn)B與以MN為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿(mǎn)分16滿(mǎn)分)已知函數(shù)(1)求證:當(dāng);(2)求證:當(dāng)

查看答案和解析>>

同步練習(xí)冊(cè)答案