某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成。
(1)求出甲考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(2)若考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。試從至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

(Ⅰ)分布列為:


1
2
3




; 
(Ⅱ)甲的實(shí)驗(yàn)操作能力較強(qiáng)。

解析試題分析:(Ⅰ)設(shè)考生甲正確完成實(shí)驗(yàn)操作的題數(shù)分別為,
,所以,         2分
所以考生甲正確完成實(shí)驗(yàn)操作的題數(shù)的概率分布列為:


1
2
3




;            4分
(Ⅱ)設(shè)考生乙正確完成實(shí)驗(yàn)操作的題數(shù)為,則
,所以          6分

,             8分
從至少正確完成2題的概率考察,甲通過的可能性大,
因此可以判斷甲的實(shí)驗(yàn)操作能力較強(qiáng)。             10分
考點(diǎn):本題考查了概率與統(tǒng)計(jì)
點(diǎn)評(píng):求解離散型隨機(jī)變量的分布列的關(guān)鍵是要搞清取每一個(gè)值對(duì)應(yīng)的隨機(jī)事件.進(jìn)一步利用排列組合知識(shí)求出取每個(gè)值的概率,對(duì)于數(shù)學(xué)期望問題,先從ξ的分布列入手,代入期望公式即可求得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人獨(dú)立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
(1)求的值.
(2)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù):,其中:,記函數(shù)滿足條件:的事件為A,求事件A發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,
道路上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.

(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有八成把握能夠按時(shí)上班?
(3)設(shè)表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“H7N9禽流感”問題越來越引起社會(huì)關(guān)注,我校對(duì)高一600名學(xué)生進(jìn)行了一次“H7N9禽流感”知識(shí)測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

(1)填寫答題卡頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);
(2)試估計(jì)該年段成績?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/c/1xlwd2.png" style="vertical-align:middle;" />段的有多少人;
(3)請(qǐng)你估算該年級(jí)的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從老校區(qū)把教師接到新校區(qū).已知從新校區(qū)到老校區(qū)有兩條公路,汽車走一號(hào)公路堵車的概率為,不堵車的概率為;汽車走二號(hào)公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號(hào)公路,丙汽車由于其他原因走二號(hào)公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號(hào)公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋中裝有大小相同的球10個(gè),其中紅球8個(gè),黑球2個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè). 求:
(1)連續(xù)取兩次都是紅球的概率;
(2)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,但取球次數(shù)最多不超過4次,求取到黑球的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了防止受到核污染的產(chǎn)品影響我國民眾的身體健康,要求產(chǎn)品進(jìn)入市場前必須進(jìn)行兩輪核放射檢測,只有兩輪都合格才能進(jìn)行銷售。已知某產(chǎn)品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響。
(1)求該產(chǎn)品不能銷售的概率
(2)如果產(chǎn)品可以銷售,則每件產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元(即獲利-80元)。已知一箱中有4件產(chǎn)品,記可銷售的產(chǎn)品數(shù)為X,求X的分布列,并求一箱產(chǎn)品獲利的均值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

兩枚質(zhì)量均勻的正方體骰子,六個(gè)面上分別標(biāo)有數(shù)字1、2、3、4、5、6,拋擲兩枚骰子.記兩枚骰子朝上的面上的數(shù)字分別為p,q,若把p,q分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo),
(1)用列表法或樹狀圖表示出點(diǎn)A(p,q)所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A(p,q)在函數(shù)y=x-1的圖象上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案