【題目】已知函數(shù),其中.

1時,求曲線在點處的切線的斜率;

2時,求函數(shù)的單調區(qū)間與極值.

【答案】1 ;2時,內是增函數(shù),在內是減函數(shù),函數(shù)的極大值為,函數(shù)的極小值;當時,內是增函數(shù),在內是減函數(shù),函數(shù)極大值為,函數(shù)處取得極小值,且.

【解析】

試題分析:1 時, 即可;2,或,分討論兩根的大小,列表求單調區(qū)間與極值即可.

試題解析: 1時,.

所以曲線在點處的切線的斜率為

2解:.

,解得,或.知,.

以下分兩種情況討論:

,則.變化時,的變化情況如下表:

所以內是增函數(shù),在內是減函數(shù).

函數(shù)處取得極大值,且.

函數(shù)處取得極小值,且.

,則,當變化時,的變化情況如下表:

所以內是增函數(shù),在內是減函數(shù).

函數(shù)處取得極小,且,

函數(shù)處取得極大值,且.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在2016年6月英國脫歐公投前夕,為了統(tǒng)計該國公民是否有留歐意愿,該國某中學數(shù)學興趣小組隨機抽查了50名不同年齡層次的公民,調查統(tǒng)計他們是贊成留歐還是反對留歐現(xiàn)已得知50人中贊成留歐的占60%,統(tǒng)計情況如下表:

年齡層次

贊成留歐

反對留歐

合計

18歲19歲

6

50歲及50歲以上

10

合計

50

1請補充完整上述列聯(lián)表;

2請問是否有975%的把握認為贊成留歐與年齡層次有關?請說明理由

參考公式與數(shù)據(jù):,其中

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】口袋中裝有質地大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個球,記下編號,放回后乙再摸一個球,記下編號如果兩個編號的和為偶數(shù)就算甲勝,否則算乙勝

1求甲勝且編號的和為6的事件發(fā)生的概率;

2這種游戲規(guī)則公平嗎?說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的一個零點為-2,當時最大值為0

1的值;

2若對,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5

)求數(shù)列{bn}的通項公式;

)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻長為2

表示墻的長;

假設所建熊貓居室的墻壁造價在墻壁高度一定的前提下為每米1000元,請將墻壁的總造價表示為的函數(shù);

為何值時,墻壁的總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

函數(shù)的圖象與的圖象無公共點,求實數(shù)的取值范圍;

是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.

(參考數(shù)據(jù):,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)的極值;

2,比較與1的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通項公式

(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案