如圖,在邊長(zhǎng)為2的菱形ABCD中,  ,現(xiàn)將沿BD翻折至,使二面角的大小為,求和平面BDC所成角的正弦值是;
0.75
中點(diǎn),連接,過(guò)點(diǎn),連接
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202810059526.png" style="vertical-align:middle;" />是邊長(zhǎng)為2的菱形,,中點(diǎn)
所以,則是二面角的平面角,從而有
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202810465698.png" style="vertical-align:middle;" />,所以,所以
,所以,則和平面所成角
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202810777898.png" style="vertical-align:middle;" />,所以
從而有
所以在中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202810855913.png" style="vertical-align:middle;" />,所以,從而,即和平面所成角的正弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分12分)
如圖,四棱錐P—ABCD中,底面ABCD是邊長(zhǎng)為的正方形E,F(xiàn)分別為PC,BD的中點(diǎn),側(cè)面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面;
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點(diǎn),在上是否存在一點(diǎn),使得∥平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三棱柱,底面為正三角形,平面,,中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,與平面所成角的余弦值為( ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三條不重合的直線兩個(gè)不重合的平面,給出下列四個(gè)命題:
①若;
②若;
③若
④若. 其中真命題是       (   )
A.① ②B.③ ④C.① ③D.② ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

體積為的球的內(nèi)接正方體的棱長(zhǎng)為_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)上.
(Ⅰ)求證:;
(Ⅱ)求四棱錐的體積;
(Ⅲ)設(shè)點(diǎn)在線段上,且,
試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

矩形中,的中點(diǎn),為邊上一動(dòng)點(diǎn),則的最大值為( 。
A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案