【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示,為了得到g(x)=2sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

【答案】B
【解析】解:由函數(shù)的圖象可知:T=4× =π. ω= =2.x= 時,函數(shù)的最大值為:2.A=2,
2=2sin( +φ),由函數(shù)的圖象可得φ=
為了得到g(x)=2sin2x的圖象,則只需將f(x)=2sin[2(x+ )]的圖象向右平移 個長度單位.
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 底面, , , 是棱上一點.

I)求證:

II)若, 分別是, 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若當(dāng)x∈R時,函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則函數(shù)y=loga| |的圖象大致為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)公差大于0的等差數(shù)列成等比數(shù)列,記數(shù)列的前n項和為.

(Ⅰ)求;

(Ⅱ)若對于任意的n∈恒成立,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+2x+c>0的解集為 ,其中a,c∈R,則關(guān)于x的不等式﹣cx2+2x﹣a>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c且a=5,sinA=
(I)若SABC= ,求周長l的最小值;
(Ⅱ)若cosB= ,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍;

(3)在(2)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=x﹣2
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn= (n∈N*)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案