已知平面內(nèi)一動點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.
(1)求動點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線于點(diǎn),且
,,
求的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對于直線,m+n是否為定值?若是,求出m+n的值,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知拋物線上一動點(diǎn),拋物線內(nèi)一點(diǎn),為焦點(diǎn)且的最小值為。
求拋物線方程以及使得|PA|+|PF|最小時(shí)的P點(diǎn)坐標(biāo);
過(1)中的P點(diǎn)作兩條互相垂直的直線與拋物線分別交于C、D兩點(diǎn),直線CD是否過一定點(diǎn)? 若是,求出該定點(diǎn)坐標(biāo); 若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
中心在原點(diǎn),長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過點(diǎn)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)作軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長軸長與短軸長的比是。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說明理由。(7分)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于和,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動,是的中點(diǎn),是的中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)直線與雙曲線相交于兩點(diǎn),
(1)求的取值范圍
(2)當(dāng)為何值時(shí),以為直徑的圓過坐標(biāo)原點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com