已知函數(shù)的圖象的對(duì)稱(chēng)軸完全相同。若,則的取值范圍是         。

【答案】

【解析】由題意知,,因?yàn)?sub>,所以,由三角函數(shù)圖象知:

的最小值為,最大值為,所以的取值范圍是

【命題意圖】本題考查三角函數(shù)的圖象與性質(zhì),考查了數(shù)形結(jié)合的數(shù)學(xué)思想。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上.
(1)若數(shù)列{an}是首項(xiàng)為1,公差也為1的等差數(shù)列,求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中的數(shù)列{an}和{bn},過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試證明:對(duì)一切正整數(shù)n,cn
9
8
;
(3)對(duì)(1)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3,得到一個(gè)新的數(shù)列{dn},問(wèn)a5是數(shù)列{dn}中的第幾項(xiàng).若設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當(dāng)b=2時(shí),記bn=
n+1
4an
(n∈N*),求數(shù)列{bn} 的前n項(xiàng)和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對(duì)于任意的n∈N*,均有3-2Tn
m
20
,若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省部分重點(diǎn)中學(xué)2008屆高三第一次聯(lián)考數(shù)學(xué)(文) 題型:044

已知函數(shù)f(x)=x2+2x,數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)的圖象上,且過(guò)點(diǎn)Pn(n,Sn)的切線的斜率為kn

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=2kn·an,求數(shù)列{bn}的前n項(xiàng)和Tn;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本大題12分)

已知函數(shù)函數(shù)的圖象與的圖象關(guān)于直線對(duì)稱(chēng),

(Ⅰ)當(dāng)時(shí),若對(duì)均有成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè)的圖象與的圖象和的圖象均相切,切點(diǎn)分別為,其中

(1)求證:;

(2)若當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省綿陽(yáng)市江油一中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當(dāng)b=2時(shí),記bn=(n∈N*),求數(shù)列{bn} 的前n項(xiàng)和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對(duì)于任意的n∈N*,均有,若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案