【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)

【解析】試題分析(Ⅰ)由面面垂直的判定定理證明;(Ⅱ)取 中點(diǎn)為M,連PM,CM,在BC邊上取點(diǎn)Q,使 ,證明四邊形為平行四邊形,得出,得到 平面 ,求三棱錐的體積時(shí),先計(jì)算 的面積,再由等體積法求出體積.

試題解析:(Ⅰ)∵⊥面ABCD,BCABCDBC

ABCD是正方形,ABBCBC

BC

所以,可證得BP

BPBC=B,⊥面PBC

(Ⅱ)取中點(diǎn),連接,在邊上取一點(diǎn),

使,則// ,

所以:PQCM為平行四邊形, //

所以:PQ//面,

PQCM為平行四邊形,∴CQ=PM=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象如圖所示.

(1)求函數(shù)fx)的解析式;

(2)求函數(shù)fx)的單調(diào)增區(qū)間;

(3)若x∈[-,0],求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間及極值;

(2)設(shè)時(shí),存在,使方程成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)結(jié)論:

①命題“,”的否定是“”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結(jié)論的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是.

(1)求點(diǎn)的軌跡的方程;

(2)直線與曲線相交于兩點(diǎn),若是否存在實(shí)數(shù),使得的面積為?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,過(guò)直線上一點(diǎn)引曲線的切線,切點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列的前項(xiàng)和,且,則下列結(jié)論錯(cuò)誤的是

A. B. C. D. 是遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定函數(shù)yf(x),設(shè)集合A{x|yf(x)}B{y|yf(x)}.若對(duì)于xA,yB,使得x+y0成立,則稱函數(shù)f(x)具有性質(zhì)P.給出下列三個(gè)函數(shù):①;②;③ylgx.其中,具有性質(zhì)P的函數(shù)的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),若關(guān)于的不等式上有解,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案