sinα=-
4
5
,且α是第三象限角,則
1+tan
α
2
1-tan
α
2
=
 
分析:利用角的范圍求出cosα,然后利用半角公式求出tan
α
2
的值,再將值代入即可求出結(jié)果.
解答:解:sinα=-
4
5
,α是第三象限角,所以cosα=-
3
5
,
α
2
在二象限,
所以tan
α
2
=
1-cosα
1+cosα
=-2
1+tan
α
2
1-tan
α
2
=
1-2
1+2
=-
1
3

故答案為:-
1
3
點(diǎn)評:本題是基礎(chǔ)題,考查三角函數(shù)的化簡求值,注意角的范圍,三角函數(shù)的符號的選取,是解好本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=-
4
5
,tanα<0,則cosα等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinθ=-
4
5
,tanθ>0,則cosθ
-
3
5
-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),弦AB過點(diǎn)P,且傾斜角為α
(1)若 sinα=
45
,求線段AB的長;
(2)若弦AB恰被P平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①若sinθ=-
4
5
,tanθ>0,則cosθ=
3
5
;
②若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
③f(x)=
2011-x2
+
x2-2011
既是奇函數(shù)又是偶函數(shù);
④已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|).其中所有正確說法的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∴f(α)=
2cos(
π
2
-α)+sin(2α-π)
4cos
α
2
sin
α
2

(1)化簡f(α);
(2)若sinα=
4
5
,且α∈(0,π),求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案