在等腰梯形中,,,,是的中點(diǎn).將梯形繞旋轉(zhuǎn),得到梯形(如圖).
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
(1)根據(jù)題意,由于即由已知可知 平面平面,結(jié)合面面垂直的性質(zhì)定理得到.
(2)結(jié)合題意,得到面平面,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/d/ysgur.png" style="vertical-align:middle;" />平面,所以 平面 從而得到證明.
(3)
解析試題分析:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/1/hmjeg1.png" style="vertical-align:middle;" />,是的中點(diǎn)
所以,又
所以四邊形是平行四邊形,所以
又因?yàn)榈妊菪危?img src="http://thumb.zyjl.cn/pic5/tikupic/db/4/1sbwi2.png" style="vertical-align:middle;" />,
所以 ,所以四邊形是菱形,所以
所以,即
由已知可知 平面平面,
因?yàn)?平面平面
所以平面 4分
(2)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/0/7ohbi.png" style="vertical-align:middle;" />,,
所以平面平面
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/d/ysgur.png" style="vertical-align:middle;" />平面,所以 平面 8分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/8/cypys.png" style="vertical-align:middle;" />平面,同理平面,建立如圖如示坐標(biāo)系
設(shè),
則,, ,, 9分
則,
設(shè)平面的法向量為,有 ,得
設(shè)平面的法向量為,有
得 12分
所以 13分
由圖形可知二面角為鈍角
所以二面角的余弦值為. 14分
考點(diǎn):平行和垂直的證明以及二面角的平面角
點(diǎn)評(píng):主要是考查了線面平行以及面面平行的性質(zhì)定理的運(yùn)用,以及二面角的求解,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中, ,,,點(diǎn)是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在三棱錐中,平面,,分別是的中點(diǎn),,與交于,與交于點(diǎn),連接。
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對(duì)于AD上任意點(diǎn)H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,都是邊長(zhǎng)為的等邊三角形.
(I)證明:
(II)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱柱中,側(cè)棱底面,
(Ⅰ)求證:平面
(Ⅱ)若直線與平面所成角的正弦值為,求的值
(Ⅲ)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫(xiě)出的解析式。(直接寫(xiě)出答案,不必說(shuō)明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正四棱錐中,,點(diǎn)M,N分別在PA,BD上,且.
(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點(diǎn).
(1)證明:MN∥平面ABCD;
(2) 過(guò)點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A-MN-Q的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com