【題目】已知函數(shù),,是的導(dǎo)函數(shù).
(1)若,求在處的切線方程;
(2)若在可上單調(diào)遞增,求的取值范圍;
(3)求證:當(dāng)時在區(qū)間內(nèi)存在唯一極大值點.
【答案】(1);(2);(3)證明見解析
【解析】
(1)對函數(shù)進行求導(dǎo),利用導(dǎo)數(shù)的幾何意義進行求解即可;
(2)求函數(shù)進行求導(dǎo),讓導(dǎo)函數(shù)大于或等于零,進行常變量分離,構(gòu)造新函數(shù),然后利用導(dǎo)數(shù)求出新構(gòu)造函數(shù)單調(diào)性,最后求出的取值范圍;
(3)對再求導(dǎo),求出該函數(shù)的單調(diào)性,進而證明函數(shù)有唯一極大值點即可.
解:(1)∵,
,又
∴在處的切線方程為;
(2)∵∴
令,,則
∵,,∴,
∴在上單調(diào)遞減,∴,
(3)∵
∴令,
∴,
顯得在上單調(diào)遞減,而
得,
取,則
故存在使
即在上單調(diào)遞增,在上單調(diào)遞減
也即為的極大值點
所以當(dāng)時,在區(qū)間內(nèi)存在唯一極大值點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線:.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線上有一動點,曲線上有一動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,左,右焦點分別為,上頂點為A,是面積為4的直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作直線與橢圓交于P,Q兩點,若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與,重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F2.原點到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交x軸于點N,M,若直線OT與以MN為直徑的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PB⊥平面ABCD,AB⊥BC,AD∥BC,AD=2BC=2,AB=BC=PB,點E為棱PD的中點.
(1)求證:CE∥平面PAB;
(2)求證:AD⊥平面PAB;
(3)求二面角E﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯誤命題是
A. “若,則”的逆命題為真
B. 線性回歸直線必過樣本點的中心
C. 在平面直角坐標(biāo)系中到點和的距離的和為的點的軌跡為橢圓
D. 在銳角中,有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com