設(shè)分別是橢圓的左右焦點(diǎn),是上一點(diǎn)且與軸垂直,直線與的另一個(gè)交點(diǎn)為.
(1)若直線的斜率為,求的離心率;
(2)若直線在軸上的截距為,且,求.
(1);(2)
解析試題分析:(1)由已知得,故直線的斜率為,結(jié)合得關(guān)于的方程,解方程得離心率的值;(2)依題意,直線和軸的交點(diǎn)是線段的中點(diǎn).故,①
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/f/6ummc4.png" style="vertical-align:middle;" />,得,從而得三個(gè)點(diǎn)坐標(biāo)的關(guān)系,將點(diǎn)的坐標(biāo)表示出來代入橢圓方程的,得另一個(gè)關(guān)于的方程并聯(lián)立方程①求即可.
(1)根據(jù)及題設(shè)知,.將代入,解得,
(舍去).故的離心率為.
(2)由題意,原點(diǎn)為的中點(diǎn),軸,所以直線與軸的交點(diǎn)是線段的中點(diǎn).故,即.①由得.設(shè),由題意得,,則即代入C的方程,得,②將①及代入②得
.解得,,故.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、中點(diǎn)坐標(biāo)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)).點(diǎn)在橢圓上,且,直線與軸、軸分別交于兩點(diǎn).
(i)設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,已知雙曲線的右焦點(diǎn),點(diǎn)分別在的兩條漸近線上,軸,∥(為坐標(biāo)原點(diǎn)).
(1)求雙曲線的方程;
(2)過上一點(diǎn)的直線與直線相交于點(diǎn),與直線相交于點(diǎn),證明點(diǎn)在上移動(dòng)時(shí),恒為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓()的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com